TOWARDS MULTIMODAL MIR: PREDICTING INDIVIDUAL DIFFERENCES FROM
MUSIC-INDUCED MOVEMENT
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Aim & Motivation

To predict individual traits given participants’ music-induced
movements while listening to various genres

e Music experiences are highly embodied, making it
necessary to consider individual embodied responses to
music in developing more advanced personalized user
experiences.

e Musical preferences have been associated previously with
Personality! and cognitive styles of thinking?.

e [ he current study is the first of its kind to use
computational methods to predict individual traits from
participants’ free music-induced movements.
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o Motion capture data of participants (/3 university students :54 females, mean age
=25.74 years, Std. = 4.72 years) moving to music excerpts from 8 genres.
- Pairwise Correntropy calculated between time series of joint markers’ data

resulting in covariance matrix.
o Train regression model on the feature vectors to get the weight vector.
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Results (EQ & SQ)

Input PCR  Bayesian Ridge
R? R-
Position | 0.708 0.771
Velocity | 0.249 0.423
Input PCR  Bayesian Ridge
R R?
Position | 0.781 0.867
Velocity | 0.252 0.469

Finger

- Calculate joint-importance from learned vector from the proposed algorithm.
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Input Openness Conscientiousness Extraversion Agreeableness Neuroticism
R? R R? R* R*
Position 0.776 0.760 0.743 0.776 0.758
Velocity 0.464 0.415 0.523 0.335 0.483
Conclusion

e Proposed a new approach to predict individual traits, with an average R?
scores for Personality, EQ, and SQ of 76.3%, 77.1%, and 86.7% respectively.

e Introduced a novel method to evaluate the relative importance of joints in
predicting these traits.

e [urther extension of this work could help to make music recommendation
systems more Multi-modal to take embodied processes into account, resulting
In more personalized experiences. Also, this approach can be made applicable
to personalized gesture-based retrieval systems.




