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Instrument P R F P R F P R F P R F
Piano 51.28 46.50 45.87 62.02 39.61 44.07 52.51 48.04 47.37 61.87 38.90 43.64
Base 73.75 58.79 64.04 39.72 50.78 42.24 74.27 59.66 64.67 40.59 51.88 43.23
Guitar 46.64 36.72 37.69 52.91 35.45 39.46 44.59 37.12 37.25 53.45 36.50 40.32
Strings 55.27 56.79 52.74 66.35 48.74 52.40 53.21 56.97 52.05 65.31 48.40 52.04
Synth pad 43.72 44.80 42.07 49.65 35.12 38.70 44.42 46.89 43.91 51.99 36.58 40.81
Reed 28.53 33.90 29.27 29.87 37.37 31.53 26.92 31.72 27.53 28.87 35.46 30.04
Brass 35.24 25.12 24.50 37.10 30.23 29.53 37.66 25.67 25.89 36.78 30.64 30.26
Organ - - - - - - 20.14 19.01 16.89 36.62 28.57 29.11
Pipe - - - - - - 22.62 27.13 23.02 38.37 39.49 35.22
Synth lead - - - - - - 20.58 17.44 17.59 29.41 25.11 24.98

Backgrounds Results

• The proposed method can transcribe undefined instruments as well as 
predefined instruments used for training

• Accuracies on undefined instruments have improved in the proposed 
method

Method (Key Ideas)
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• Transcribe arbitrary musical instruments
• Deal with music signals played by any harmonic instruments
• Specify the number of instruments in advance 
• Estimate piano rolls of multiple instrument parts
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• Most conventional methods based on supervised learning 
of DNNs can deal with only predefined instruments 
included in training data

• Thus, it is impossible to transcribe undefined instruments 
that are not included in the training data

• The proposed method 
can successfully achieve 
multi-instrument music 
transcription

• Note that every part is 
played by a polyphonic 
instrument
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• Use a DNN capable of timbre-based clustering
• Specify the number of instruments at run-time
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• Deep clustering separates a 
speech mixture to an 
arbitrary number of speakers 
based on the characteristics 
of voices

• Application of deep clustering 
to part separation in the task 
of multi-instrument music 
transcription
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• Make effective use of complementary relationships between part separation in two 
domains by joint part separation

• Use a pitchgram as a proxy of a condensed piano roll
• Estimate the pitchgram using an existing multi-pitch estimator
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Conclusions & Future work
• Multi-instrument music transcription method based on deep clustering
• The pitchgram and spectrogram are jointly embedded into features spaces
• k-means clustering with a specified number of instruments is conducted
• Undefined instruments can be dealt with as well as predefined instruments
• Explore other timbre representations as alternatives to the spectrogram
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• A pitchgram contains false estimates
• Prepare a silent part in separating it

𝑿#$ ground truth condensed pitchgram
$𝑿#$ estimated condensed pitchgram
𝑽#$,'$ two latent spaces for a pitchgram and a spectrogram
$𝑴#$,'$ two correct masks for a pitchgram and a spectrogram
𝛼, 𝛽 parameters to decide the weights of two losses

Method (Special Notes)
• Overall optimization after training each part

Deep Spherical 
Clustering

Silent Part

• Train the multi-pitch estimator

• Train the simultaneous embedding 

• Optimize the whole network
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