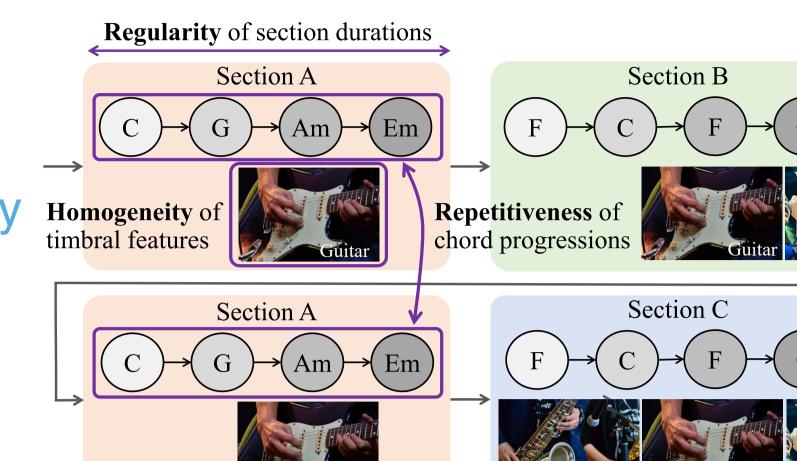
Music Structure Analysis Based on an LSTM-HSMM Hybrid Model

Go Shibata¹ Ryo Nishikimi¹ Kazuyoshi Yoshii¹ ¹ Graduate School of Informatics, Kyoto University, Japan

Abstract

- Recognize meaningful musical sections
- Probabilistic formulation based on music knowledge about musical sections: homogeneity, repetitiveness, and regularity
- Emission probabilities of mel spectra computed by bidirectional LSTM
- Unsupervised learning based on Bayesian inference

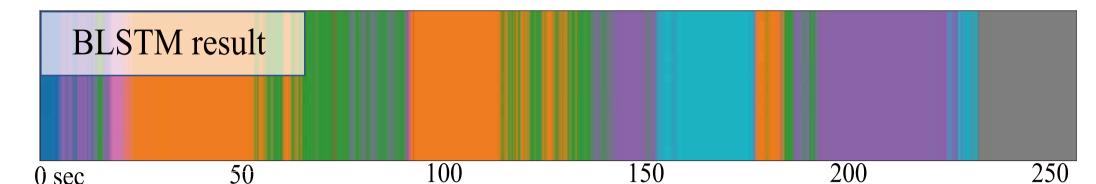


Background

Supervised learning of a DNN does not work well

- Gives unnaturally-frequent label switching because of the lack of annotated training data
- Thus we need to make effective use of music knowledge about musical sections

8 bars



4 bars

0 sec

Regularity

50 100

Latent states

Durations

250

8 bars

Model Formulation and Inference

LSTM-HSMM Hybrid Model

The proposed method deals with segmentation and labeling simultaneously

Model Formulation

 ho_z

 v_z

 $\phi^{(z)}_{ss'}$

 $s_{n,1} = 1$

 $\tau_1 < \tau_2 \Longrightarrow s_{n,\tau_1} \le s_{n,\tau_2}$

Two-Level Hierarchical Markov Chains

Upper-level: ergodic semi-Markov model

Generate a sequence of sections *Z* and their durations *D*

 $p(z_1, d_1) = \rho_{z_1} \psi_{d_1}$ ψ_d $p(z_n, d_n | z_{n-1}, d_{n-1}) = \pi_{z_{n-1}z_n} \psi_{d_n}$ $\pi_{zz'}$ $p(z_N, d_N | z_{N-1}, d_{N-1}) = \pi_{z_{N-1}z_N} \psi_{d_N} v_{z_N}$

Lower-level: left-to-right Markov model Generate a sequence of chords *S*

 $p(s_{n,\tau}|z_n, s_{n,\tau-1}) = \phi_{s_{n,\tau-1}}^{(z_n)}$

Acoustic Model

Outputs chroma vectors, MFCCs, and mel spectra

Chroma vectors

Sections Repetitiveness Chords Observations Chroma initial probability of sections Repetitiveness vectors duration probability of sections transition probability of sections **MFCCs** Homogeneity terminal probability of sections Mel Labeling network spectra transition probability of chords Inference **Gibbs Sampling**

Describe the repetitiveness of chord sequences

Generated from Gaussian distributions corresponding to sections and chords

• **MFCCs** (Mel-Frequency Cepstrum Coefficients) Describe the homogeneity of timbral features Generated from Gaussian distributions corresponding to sections

 $F_{0.5}$ (%)

Mel spectra

Associate sections with labels

 $\mathbf{x}^{s} \sim p(z|\mathbf{x}^{s})/p(z)$

 $\mathbf{x}^{c} \sim \mathcal{N}(\boldsymbol{\mu}_{Z,S}^{c}, (\boldsymbol{\Lambda}_{Z,S}^{c})^{-1})$

 $\mathbf{x}^m \sim \mathcal{N}(\boldsymbol{\mu}_z^m, (\boldsymbol{\Lambda}_z^m)^{-1})$

Generated using probabilities based on a bidirectional LSTM

Prior Distributions

We put conjugate prior distributions for parameters of the model

- Degenerate unnecessary sections during the Bayesian sparse learning
- Incorporate the regularity of section durations as prior knowledge
- Use empirical distributions a_{emp}^{ρ} , $a_{emp}^{\pi_z}$, a_{emp}^{ψ} , and a_{emp}^{v} for the prior distributions

Sampling latent variables			Sampling model parameters					
Forward filtering-backward sampling			Sample from posterior distributions of parameters					
	$p(\mathbf{Z}, \mathbf{D}, \mathbf{S} \mathbf{\Theta}, \mathbf{X}^c, \mathbf{X}^m, \mathbf{X}^s)$ $\qquad \qquad $			$p(\boldsymbol{\Theta} \boldsymbol{Z}, \boldsymbol{D}, \boldsymbol{S}, \boldsymbol{X}^{c}, \boldsymbol{X}^{m}, \boldsymbol{X}^{s})$ $ \qquad \qquad$				
Viterb	Viterbi Training							
S	Sampling latent variables			Sampling model parameters				
Viterbi algorithm			Take expectation values of posteriors					
	$p(\mathbf{Z}, \mathbf{D}, \mathbf{S} \mathbf{\Theta}, \mathbf{X}^c, \mathbf{X}^m, \mathbf{X}^s)$ Maximize			$p(\boldsymbol{\Theta} \boldsymbol{Z}, \boldsymbol{D}, \boldsymbol{S}, \boldsymbol{X}^{c}, \boldsymbol{X}^{m}, \boldsymbol{X}^{s})$ Expectation				

Evaluation

Comparison with Conventional Methods

Example of Analysis Result

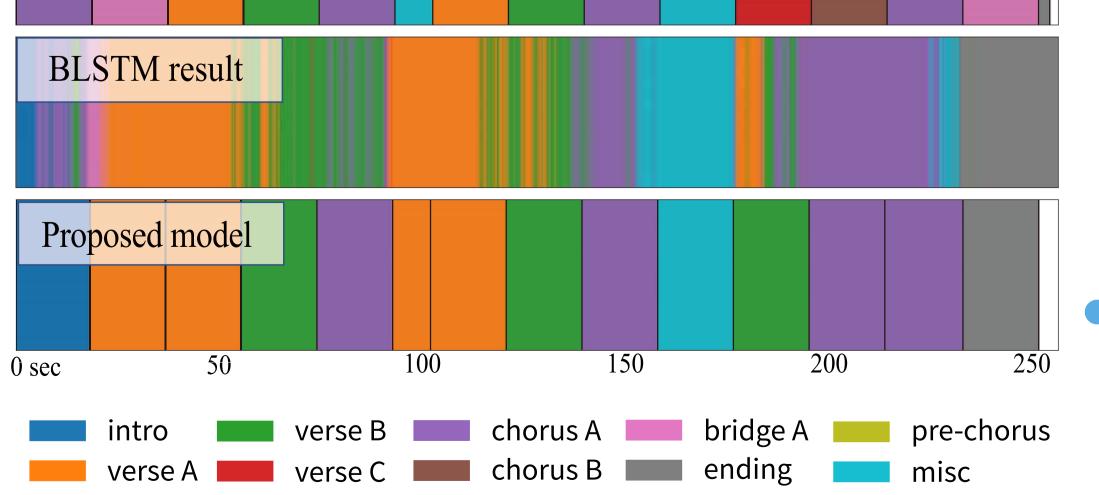
Method

Segmentation		Clustering	Labeling	
(%)	F _{3.0} (%)	F _{pair} (%)	accuracy(%	

Ground truth uracy(%)

The bidirectional LSTM was confused between "verse A"

GS3 [Grill+, '15]	52.3	73.5	54.2	n/a
SUG2 [Schlüter+, '14]	25.8	73.7	37.3	n/a
FK2 [Kaiser+, '13]	30.0	65.7	63.4	n/a
[Paulus, '09]	n/a	63.0	63.7	34.4
Proposed	43.3	66.5	54.6	45.3



and "verse B" or between "verse B" and "chorus A", while the proposed model correctly recognized these sections

• We need to improve the proposed model to avoid errors such as the confusion between "intro" and "chorus A"

Future Work

- The proposed method worked best in terms of labeling accuracy
- There is much room for improvement except for labeling accuracy
- Refine the model to incorporate the novelty aspect
- Deal with more hierarchies because music has a hierarchical structure, from motive and phrase to section and section group