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Model Formulation and Inference

LSTM-HSMM Hybrid Model

Latent states
The proposed method deals with segmentation and labeling simultaneously _ . 8 bars 4 bars 8 bars
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® Lower-level: left-to-right Markov model
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Outputs chroma vectors, MFCCs, and mel spectra Gibbs Sampling
® Chroma vectors M (A ) ) Sampling latent variables Sampling model parameters
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Prior Distributions Sampling latent variables Sampling model parameters
We put conjugate prior distributions for parameters of the model Viterbi algorithm Take expectation values of posteriors
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Evaluation

Comparison with Conventional Methods Example of Analysis Result

Vethod Segmentation Clustering Labeling Ground truth ® The bidirectional LSTM was
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® We need to improve the
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labeling accuracy | o Refine the model to incorporate the novelty aspect

® There is much room for improvement except for e Deal with more hierarchies because music has a hierarchical structure, from

labeling accuracy motive and phrase to section and section group



