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Bistate Reduction & Comparison of Drum Patterns

Olivier Lartillot, MIRAGE, RITMO, University of Oslo
Fred Bruford, Centre for Digital Music, Queen Mary University

Computational models of similarity for drum patterns:
important MIR applications (drum pattern recommendation,
generation systems)

Challenge: Modelling complexity of polyphonic rhythm perception.
O How are multiple rhythmic streams integrated by listener?
O How do we perceive interaction between rhythmic streams?

Basic drum patterns usually defined by alternation of, typically,
O bass drum (or “kick drum”) strokes &

O snare drum strokes

(further subdivision on ride cymbal or hi-hat)

Main hypotheses:

For any drum pattern, we tend to perceive alternation of 2
types of states: Low & High states
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When comparing drum patterns,

O we focus on 2 main drums and ignore other drum channels.

O we focus on alternation between these 2 drums, ignoring
successive repetitions of same drum.

Comparison based on simple alignment:
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More details:
How to detect Low and High states when both drums are played?
wm State transition diagrams:

1st drum stroke: Previous drum stroke:

drum magnitude &

How to align two reduced drum patterns?
w Misalignment penalties:

Drum pattern A: High: < ) n
Low: n < ) ﬂ n
Drum pattern B: High: > n g

Distance measure = summing misalignment penalties (weighted by
stroke magnitude)
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Evaluation: comparison with perceptual similarity ratings
Dataset: 160 drum patterns, various genres (rock, pop, jazz...)
Split into 80 pairs, with similarity ratings from 21 listeners
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Z-score comparison:

AR AR,

Listeners’ ratings, New proposed distance,
Hamming distance on the 2 main channels
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Similarity Model r p
Hamming Distance 0.604 | 2.97e-9
Hamming Distance (2 channels) 0.539 | 2.58e-7
Bistate Sequence Alignment 0.556 | 8.49¢-8
min(Hamming (2 chan), Alignment) | 0.606 | 2.65e-9
min(Hamming, Alignment) 0.692 | 1.21e-12

Table 2. Pearson correlation coefficient r and p-value be-
tween mean similarity ratings and distance models.

Results indicate that algorithms capture fundamentally

different aspects of similarity:

O Hamming distance capturing low-level similarities between
rhythms

O proposed bistate sequence alignment capturing qualities
relating to rhythmic interaction and structure.
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https://www.youtube.com/watch?v=6ttcHjxkkP8&feature=youtu.be&t=42
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