Bistate Reduction & Comparison of Drum Patterns

Olivier Lartillot, MIRAGE, RITMO, University of Oslo **Fred Bruford**, Centre for Digital Music, Queen Mary University

Computational models of **similarity** for drum patterns: important MIR applications (drum pattern recommendation, generation systems)

<u>Challenge</u>: Modelling complexity of polyphonic rhythm perception.
O How are multiple rhythmic streams integrated by listener?
O How do we perceive interaction between rhythmic streams?

Basic drum patterns usually defined by alternation of, typically,
bass drum (or "kick drum") strokes &
snare drum strokes
(further subdivision on ride cymbal or hi-hat)

Main hypotheses:

For **any** drum pattern, we tend to perceive **alternation** of **2** types of states: **Low** & **High states**

When comparing drum patterns,

• we focus on **2 main drums** and ignore other drum channels.

• we focus on alternation between these 2 drums, ignoring

successive repetitions of same drum. Comparison based on simple alignment

More details:

How to detect Low and High states when both drums are played? State transition diagrams:

How to align two reduced drum patterns? *Misalignment penalties:*

Distance measure = summing misalignment penalties (weighted by stroke magnitude)

Evaluation: comparison with perceptual similarity ratings

Dataset: 160 drum patterns, various genres (rock, pop, jazz...) Split into 80 pairs, with similarity ratings from 21 listeners

Listeners' ratings, New proposed distance, Hamming distance, Hamming distance on the 2 main channels

Similarity Model	r	р
Hamming Distance	0.604	2.97e-9
Hamming Distance (2 channels)	0.539	2.58e-7
Bistate Sequence Alignment	0.556	8.49e-8
min(Hamming (2 chan), Alignment)	0.606	2.65e-9
min(Hamming, Alignment)	0.692	1.21e-12

Table 2. Pearson correlation coefficient *r* and *p*-value between mean similarity ratings and distance models.

Results indicate that algorithms capture fundamentally **different aspects of similarity**:

• Hamming distance capturing **low-level** similarities between

rhythms

• proposed **bistate sequence alignment** capturing qualities relating to **rhythmic interaction and structure**.

Work partially supported by the Research Council of Norway through its Centers of Excellence scheme, project number 262762, the **MIRAGE** project, grant number 287152 and and the TIME project, grant number 249817. The work was also funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and by a Short-Term Scientific Mission grant provided by Nord-Forsk's Nordic University Hub "Nordic Sound and Music Computing Network—NordicSMC", project number 86892.