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Grooving

Grooving of each bar are represented as a 16-dim
vector.

Objective Evaluation

On Fingering

Motivation

Automatic music composition
e Describe piano music as a sequence of event

. string (high-pitched <> low-pitched)
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e Representation for tabulature data are not yet e Soft grooving (a) accuracy | 100% 99% 97% 94% 91%  90%
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. o . . Table 3. (a) The average accuracy of our model in as-
for automatic composition is also unclear, especially (a) (b) sociating each STRING with a NOTE—ON, broken down

by string; (b—d) The string-relevant output probability esti-

for implicit information such as grooving.
P 5 5 mated by our model for three different pitches.

Figure 3. Samples of 16-dim hard grooving patterns as-
signed to 2 different clusters (a), (b) by kmeans clustering.

Dataset

e Compile our own guitar tab dataset with specific
genre of fingerstyle.

e Data filtering:
a. non-standard tuning
b. more than one guitar g _

Event Representation

On Grooving

We compare the performance of models trained
with or without GROOVING for generating
“continuations” of a given “prompt.”

a Event Sequence _
Bar,
Position_1/16, Note Velocity(16), Note On(48), Note Duration (8), String(5), Fret(3),
Position_1/16, Note Velocity(14), Note On(52), Note Duration (6), String(4), Fret(2),

Position_1/16, Note Velocity(16), Note On(55), Note Duration (4), String(3), Fret(0),
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Position_1/16, Note Velocity(14), Note On(60), Note Duration (4), String(2), Fret(1),

C. low quality (wrong fingering and obvious Subjective Evaluation Ter;accuﬁziT ISnOef:ndlStaII:lcifI\L
annotation errors) .
R ckb Vodel We conduct a user study to ask the user to rate the hard grooving | 76.2%  82.4% | 563  44.6
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We provide additional audio 0 H 1 H i

samples and the video recording
that is a guitarist from our team
playing a generated tab in the QR
code.
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Figure 6. Result of the first user study asking subjects to
choose the best among the three continuations generated
by different models, with or without GROOVING, given a
man-made prompt. The result 1s broken down according to
the self-report guitar proficiency level of the subjects.

Table 4. Objective evaluation on groove coherence.

Key Contributions

1. Proposed a new representation for tabulature data and grooving.
2. Proposed several evaluation methods for tab generation and

grooving consistency.
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Motivation Backbone Model
Automatic music composition Transformer-XL
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e Representation for tabulature data are not yet be between each token. 3 Position_1/16, Note Velocity(14), Note On(60), Note Duration (4), String(2), Fret(1),
explored. e Shows better result in previous music generation paper. ) )

Grooving

* The best way to represent higher-level information

for automatic composition is also unclear, especially  Grooving of each bar are represented as a 16 grids vector. B B H N EEE Bl BEE BEE EEE
for implicit information such as grooving. e Hard grooving = m = = = = = - = = = =
* Soft grooving (2) (b)

e Compile our own guitar tab dataset with specific * Multi-resolution grooving.

genre of fingerstyle.
e Data filtering:
a. non-standard tuning

Figure 3. Samples of 16-dim hard grooving patterns as-
signed to 2 different clusters (a), (b) by £means clustering.

Experiment
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generated tab in the QR code.

Table 4. Objective evaluation on groove coherence.

1. We proposed a new representation for tabulature data and grooving..
2. We provide series of evaluations supporting the effectiveness of a modern neural sequence
mode for higher level music information integration.

by different models, with or without GROOVING, given a
man-made prompt. The result is broken down according to
the self-report guitar proficiency level of the subjects.
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Automatic music composition Transformer-XL

e Describe piano music as a sequence of event e Recurrence mechanism enable transformer model to
tokens. capture relative mechanism for long-term dependency

e Representation for tabulature data are not yet be between each token.
explored. e Shows better result in previous music generation paper [1].

Grooving

e The best way to represent higher-level information
for automatic composition is also unclear, especially
for implicit information such as grooving.

e Compile our own guitar tab dataset with specific
genre of fingerstyle

e Data filtering:
a. non-standard tuning

Grooving

e Hard grooving
e Soft grooving
e Multi-resolution grooving.

Experiment

Backbone Model

Grooving of each bar are represented as a 16 grids vector.

_Bar,
Position_1/16, Note Velocity(16), Note On(48), Note Duration (8), String(5), Fret(3),

Position_1/16, Note Velocity(14), Note On(52), Note Duration (6), String(4), Fret(2),
Position

Position_1/16, Note Velocity(14), Note On(60), Note Duration (4), String(2), Fret(1),
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Event Sequence

1/16, Note Velocity(16), Note On(55), Note Duration (4), String(3), Fret(0),
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Figure 3. Samples of 16-dim hard grooving patterns as-

signed to 2 d1

re

‘erent clusters (a), (b) by kmeans clustering.

b. more than one guitar string (high-pitched «» low-pitched)
| ity ( e . d obvi Ist 2nd 3rd 4th 5th  6th
C. 10W qua_l Y \WTrong Tingering ahd obvious (@) accuracy | 100% 99% 97% 94% 91% 90%
annotation errors) (b)pitch42 | ~0% ~0% 10% ~0% 27% 63%
(©) pitch57 | ~0% 6% 65% 26% ~0% ~0%
(d) pitch69 | 85% 14% ~0% ~0% ~0% ~0%

Table 3. (a) The average accuracy of our model in as-
sociating each STRING with a NOTE-ON, broken down
by string; (b—d) The string-relevant output probability esti-
mated by our model for three different pitches.
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choose the best among the three continuations generated

Table 4. Objective evaluation on groove coherence.

by different models, with or without GROOVING, given a
man-made prompt. The result is broken down according to
the self-report guitar proficiency level of the subjects.
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Figure 6. Result of the first user study asking subjects to
choose the best among the three continuations generated
by different models, with or without GROOVING, given a
man-made prompt. The result is broken down according to
the self-report guitar proficiency level of the subjects.

Objective Evaluatin

e 1 fﬁ‘ )
1. We proposed a new representation for tabulature data and grooving. s IH- H I i H i
2. We provide series of evaluations supporting the effectiveness of a modern neural sequence C , ; . .

mode for higher level music information integration. A

B No grooving [ Soft grooving [ Hard grooving



