
AUTOMATIC COMPOSITION OF GUITAR TABS BY TRANSFORMERS AND GROOVE MODELING

Yu-Hua Chen^{1,2,3}, Yu-Siang Huang¹, Wen-Yi Hsiao¹ and Yi-Hsuan Yang^{1,2} ¹Taiwan AI Labs, Taiwan ²Academia Sinica, Taiwan ³National Taiwan University

Motivation Automatic music composition • Describe piano music as a sequence of event tokens. • Representation for tabulature data are not yet explored. Grooving • The best way to represent higher-level information for automatic composition is also unclear, especially for implicit information such as grooving. Dataset • Compile our own guitar tab dataset with specific genre of fingerstyle. • Data filtering: a. non-standard tuning b. more than one guitar c. low quality (wrong fingering and obvious annotation errors) Backbone Model We use **Transformer-XL** which shows better result in previous music generation paper. Audio samples and video We provide additional audio

samples and the video recording that is a guitarist from our team playing a generated tab in the QR code.

choose the best among the three continuations generated by different models, with or without GROOVING, given a man-made prompt. The result is broken down according to the self-report guitar proficiency level of the subjects.

Objective Evaluation

On Fingering

	string (high-pitched \leftrightarrow low-pitched)					
	1st	2nd	3rd	4th	5th	6th
(a) accuracy	100%	99%	97%	94%	91%	90%
(b) pitch 42	$\sim 0\%$	${\sim}0\%$	10%	${\sim}0\%$	27%	63%
(c) pitch 57	${\sim}0\%$	6%	65%	26%	${\sim}0\%$	${\sim}0\%$
(d) pitch 69	85%	14%	$\sim 0\%$	$\sim 0\%$	$\sim 0\%$	$\sim\!\!0\%$

Table 3. (a) The average accuracy of our model in associating each STRING with a NOTE-ON, broken down by string; (b–d) The string-relevant output probability estimated by our model for three different pitches.

On Grooving

We compare the performance of models trained with or without **GROOVING** for generating "continuations" of a given "prompt."

	Hard ac	curacy †	Soft distance \downarrow		
	mean	max	mean	min	
hard grooving	76.2%	82.4%	56.3	44.6	
soft grooving	76.9%	83.0%	56.2	43.7	
multi-hard	79.0%	85.7%	57.8	44.3	
multi-soft	74.6%	81.1%	64.7	52.9	
no grooving	70.0%	80.1%	58.6	47.7	
training data	82.1%	89.5%	43.8	28.6	
random	64.9%	71.3%	70.6	59.6	

Table 4. Objective evaluation on groove coherence.

Key Contributions

- 1. Proposed a new representation for tabulature data and grooving.
- 2. Proposed several evaluation methods for tab generation and grooving consistency.

AUTOMATIC COMPOSITION OF GUITAR TABS BY TRANSFORMERS AND GROOVE MODELING

Motivation

Automatic music composition

- Describe piano music as a sequence of event tokens.
- Representation for tabulature data are not yet be explored.

Grooving

• The best way to represent higher-level information for automatic composition is also unclear, especially for implicit information such as grooving.

Dataset

- Compile our own guitar tab dataset with specific genre of fingerstyle.
- Data filtering:
- a. non-standard tuning
- b. more than one guitar
- c. low quality (wrong fingering and obvious annotation errors)

Audio samples and video

We provide additional audio samples and the video recording that is a guitarist from our team playing a generated tab in the QR code.

Yu-Hua Chen^{1,2,3}, Yu-Siang Huang¹, Wen-Yi Hsiao¹ and Yi-Hsuan Yang^{1,2} ¹Taiwan Al Labs, Taiwan ²Academia Sinica, Taiwan ³National Taiwan University

Backbone Model

Transformer-XL

- Recurrence mechanism enable transformer model to capture relative mechanism for long-term dependency between each token.
- Shows better result in previous music generation paper.

Grooving

Grooving of each bar are represented as a 16 grids vector.

- Hard grooving
- Soft grooving
- Multi-resolution grooving.

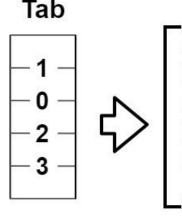
Experiment

	string (high-pitched \leftrightarrow low-pitched)					
	1st	2nd	3rd	4th	5th	6th
(a) accuracy	100%	99%	97%	94%	91%	90%
(b) pitch 42	$\sim 0\%$	${\sim}0\%$	10%	${\sim}0\%$	27%	63%
(c) pitch 57	${\sim}0\%$	6%	65%	26%	${\sim}0\%$	$\sim\!\!0\%$
(d) pitch 69	85%	14%	$\sim \! 0\%$	$\sim\!\!0\%$	$\sim\!\!0\%$	$\sim\!\!0\%$

Table 3. (a) The average accuracy of our model in associating each STRING with a NOTE-ON, broken down by string; (b–d) The string-relevant output probability estimated by our model for three different pitches.

hard groo soft groo multi-ha multi-sof no groov training

random


Key Insights

- 1. We proposed a new representation for tabulature data and grooving.
- mode for higher level music information integration.

Event Representation

Position_1/16, Note Velocity(16), Note On(48), Note Duration (8), String(5), Fret(3) Position_1/16, Note Velocity(14), Note On(52), Note Duration (6), String(4), Fret(2), Position_1/16, Note Velocity(16), Note On(55), Note Duration (4), String(3), Fret(0), Position_1/16, Note Velocity(14), Note On(60), Note Duration (4), String(2), Fret(1),

Event Sequence

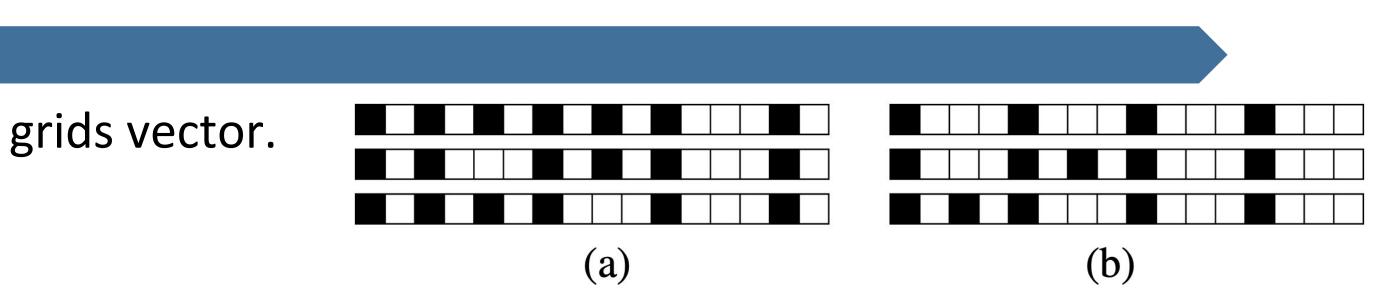


Figure 3. Samples of 16-dim hard grooving patterns assigned to 2 different clusters (a), (b) by k means clustering.

	Hard ac	curacy †	Soft distance \downarrow		
	mean	max	mean	min	
ooving	76.2%	82.4%	56.3	44.6	
oving	76.9%	83.0%	56.2	43.7	
ard	79.0%	85.7%	57.8	44.3	
oft	74.6%	81.1%	64.7	52.9	
ving	70.0%	80.1%	58.6	47.7	
data	82.1%	89.5%	43.8	28.6	
	64.9%	71.3%	70.6	59.6	

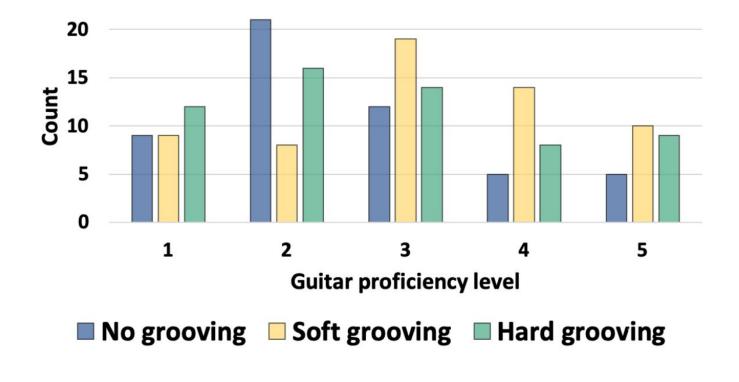


Figure 6. Result of the first user study asking subjects to choose the best among the three continuations generated by different models, with or without GROOVING, given a man-made prompt. The result is broken down according to the self-report guitar proficiency level of the subjects.

 Table 4. Objective evaluation on groove coherence.

2. We provide series of evaluations supporting the effectiveness of a modern neural sequence

AUTOMATIC COMPOSITION OF GUITAR TABS BY TRANSFORMERS AND GROOVE MODELING

Motivation

Automatic music composition

- Describe piano music as a sequence of event tokens.
- Representation for tabulature data are not yet be explored.

Grooving

 The best way to represent higher-level information for automatic composition is also unclear, especially for implicit information such as grooving.

Dataset

- Compile our own guitar tab dataset with specific genre of fingerstyle
- Data filtering:
- a. non-standard tuning
- b. more than one guitar
- c. low quality (wrong fingering and obvious annotation errors)

Reference

[2] Bryan Wang and Yi-Hsuan Yang. PerformanceNet: Score-to-audio music generation with multi-band convolutional residual network. In Proc. AAAI, 2019

Yu-Hua Chen^{1,2,3}, Yu-Siang Huang¹, Wen-Yi Hsiao¹ and Yi-Hsuan Yang^{1,2} ¹Taiwan AI Labs, Taiwan ²Academia Sinica, Taiwan ³National Taiwan University

Backbone Model

Transformer-XL

- Recurrence mechanism enable transformer model to capture relative mechanism for long-term dependency between each token.
- Shows better result in previous music generation paper [1].

Grooving

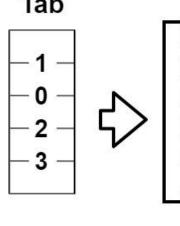
Grooving of each bar are represented as a 16 grids vector.

- Hard grooving
- Soft grooving
- Multi-resolution grooving.

Experiment

	string (high-pitched \leftrightarrow low-pitched)					
	1st	2nd	3rd	4th	5th	6th
(a) accuracy	100%	99%	97%	94%	91%	90%
(b) pitch 42	$\sim 0\%$	${\sim}0\%$	10%	${\sim}0\%$	27%	63%
(c) pitch 57	$\sim 0\%$	6%	65%	26%	$\sim\!\!0\%$	$\sim\!\!0\%$
(d) pitch 69	85%	14%	$\sim \! 0\%$	$\sim \! 0\%$	$\sim \! 0\%$	$\sim \! 0\%$

Table 3. (a) The average accuracy of our model in associating each STRING with a NOTE-ON, broken down by string; (b–d) The string-relevant output probability estimated by our model for three different pitches.


hard gro soft gro multi-h multi-so no groo

training random

• Event Representation

Position_1/16, Note Velocity(16), Note On(48), Note Duration (8), String(5), Fret(3) Position_1/16, Note Velocity(14), Note On(52), Note Duration (6), String(4), Fret(2), Position_1/16, Note Velocity(16), Note On(55), Note Duration (4), String(3), Fret(0), Position_1/16, Note Velocity(14), Note On(60), Note Duration (4), String(2), Fret(1)

Event Sequence

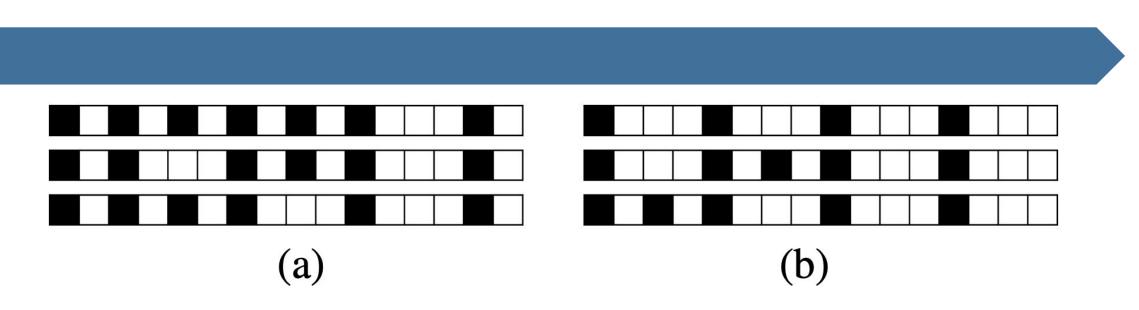


Figure 3. Samples of 16-dim hard grooving patterns assigned to 2 different clusters (a), (b) by k means clustering.

	Hard ac	curacy †	Soft distance \downarrow		
	mean	max	mean	min	
rooving	76.2%	82.4%	56.3	44.6	
ooving	76.9%	83.0%	56.2	43.7	
nard	79.0%	85.7%	57.8	44.3	
soft	74.6%	81.1%	64.7	52.9	
oving	70.0%	80.1%	58.6	47.7	
g data	82.1%	89.5%	43.8	28.6	
n	64.9%	71.3%	70.6	59.6	

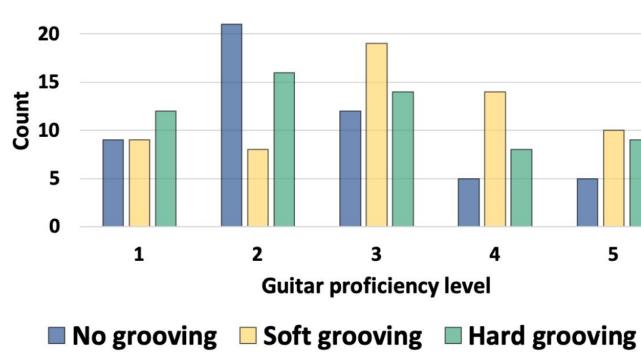
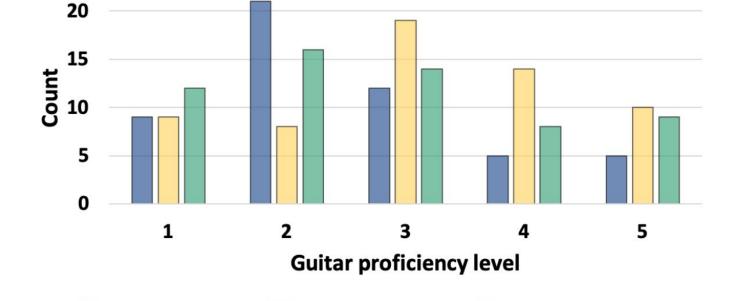


Figure 6. Result of the first user study asking subjects to choose the best among the three continuations generated by different models, with or without GROOVING, given a man-made prompt. The result is broken down according to the self-report guitar proficiency level of the subjects.

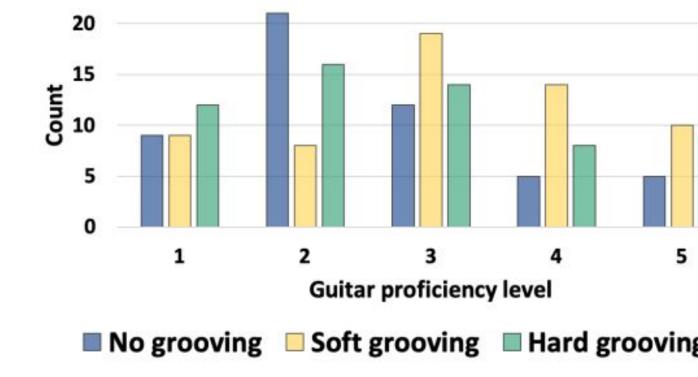
Table 4. Objective evaluation on groove coherence.



20

Figure 6. Result of the first user study asking subjects to choose the best among the three continuations generated by different models, with or without GROOVING, given a man-made prompt. The result is broken down according to the self-report guitar proficiency level of the subjects.

Key Insights


- 1. We proposed a new representation for tabulature data and grooving.
- mode for higher level music information integration.

■ No grooving ■ Soft grooving ■ Hard grooving

Objective Evaluatin

2. We provide series of evaluations supporting the effectiveness of a modern neural sequence

