The Jazz Transformer on the Front Line: **Exploring the Shortcomings of Al-Composed Music** through Quantitative Measures

Shih-Lun Wu^{1, 2} <b06902080@csie.ntu.edu.tw>

Yi-Hsuan Yang^{2, 3} <yang@citi.sinica.edu.tw>

¹ National Taiwan University ² Taiwan AI Labs ³ Academia Sinica. **Taipei, Taiwan.**

Fig. 1. The first 8 bars of a piece composed by

I. Motivation

The recent success of *Transformer* models in NLP and ample symbolic music datasets led to a new wave of research in **automatic music composition**. This boom, however, poses to us some great questions:

> The competence of *Transformers* is often claimed in the literature. Is that the true story?

- > If not, can we find the culprits in a quantitative manner? (*i.e.*, not fully relying on user studies.)
- > Do the structure-related labels (e.g., phrases, parts) in WJazzD dataset assist in models' learning?

2. Building the Jazz Transformer

3. Getting User Feedback

our **Model (B)**, in which we may see:

- **Clear rests between phrases** \bullet
- Good combination of chords and melody.

4. Building Objective Metrics

We develop a set of empirical measures to find out why machines still lose to humans. Furthermore, these measures can help in evaluating the models' performance even before conducting user studies.

- \succ Pitch Histogram Entropy: $\mathcal{H}_1, \mathcal{H}_4$ $\mathcal{H}(\overrightarrow{\mathbf{h}}) = -\sum h_i \log_2(h_i)$
 - measures instability of *pitch usage*
- \blacktriangleright Grooving Pattern Similarity: \mathcal{GS} $\mathcal{GS}(\overrightarrow{\mathbf{g}}^{a}, \overrightarrow{\mathbf{g}}^{b}) = 1 - \frac{1}{Q} \sum_{i=1}^{Q-1} \operatorname{XOR}(g_{i}^{a}, g_{i}^{b})$ - measures consistency of *rhythm*

To feed Jazz music into the *Transformer* for training, first, it must be converted to a series of event tokens. Here is how we construct the vocabulary:

Note NOTE-VELOCITY (32), Note-On (128), NOTE-DURATION (32)

Chord

CHORD-TONE (C, C#, ..., B, 12) CHORD-TYPE (47), CHORD-SLASH (C, C#, ..., B, 12)

MIDLEVEL-UNIT (23), PHRASE PART-START, PART-END (5) REP-START, REP-END (6)

Metric

BAR, POSITION (64)

TEMPO-CLASS (5),

Structure

TEMPO (60)

To verify the efficacy of adding *Structure*-related events, we consider 2 variants of the *Jazz Transformer*:

- > Model (A): trained with *Note + Metric + Chord* events
- > Model (B): trained with the *complete set* of events.

	Model (A)		Model (B)			Real
loss	0.80	0.25	0.80	0.25	0.10	

In our blind listening test, users listen to 2 pieces by **Model (B)** & 2 real ones. They are asked to rate each piece in a 5-point scale on the following aspects:

\succ Overall Quality (O)

- Does the music sound good overall?

Impression (I)

- Can you recall a certain part or melody?

Structureness (S)

- Are there repeated motifs or phrases?

Richness (R)

- Do you feel the music interesting/bland?

Chord Progression Irregularity: CPI

Percentage of *unique chord trigrams*

- measures inconsistency of *harmony*

- \succ Structureness Indicator: SI_3^8 , SI_8^{15} , SI_{15} $\mathcal{SI}_l^u(S) = \max_{\substack{l \le i \le u \\ 1 \le j \le N}} S$
 - examines presence of *repeated structures*
- \blacktriangleright Continuation Prediction Challenge: CtPr

Given an 8-bar primer, predict the *correct 8-bar continuation* from 4 choices

- examines overall understanding of music.

Fig. 3. The models' performance in metric CtPr w.r.t. loss level, telling us that:

\mathcal{H}_1	2.29	2.45	2.26	2.20	2.17	1.94
\mathcal{H}_4	3.12	3.05	3.04	2.91	2.94	2.87
\mathcal{GS}	0.76	0.69	0.75	0.76	0.76	0.86
\mathcal{CPI}	81.2	77.6	79.2	72.6	75.9	40.4
\mathcal{SI}_3^8	0.18	0.22	0.25	0.27	0.26	0.36
\mathcal{SI}_8^{15}	0.15	0.17	0.18	0.18	0.17	0.36
${\cal SI}_{15}$	0.11	0.14	0.10	0.12	0.11	0.35

Table 2. The results of objective evaluations
 (numbers are the closer to **Real** the better).

Takeaways

- Model (B) at 0.25 loss level is the closest competitor to humans.
- The models' deficiencies are manifest in: - *erraticity* of *pitch usage* (high $\mathcal{H}_1, \mathcal{H}_4$)
 - lack of consistency in rhythm & harmony (low \mathcal{GS} & high \mathcal{CPI})

- absence of longer-term structures (low $\mathcal{SI}_8^{15}, \mathcal{SI}_{15}$).

Fig. 2. The results of user study, showing that the *gap* between machine and real pieces is perceptible and statistically significant.

Fig. 4. Fitness scape plots, placing Model (B)'s work & a human composition in comparison. The machine composition's lack of mediumand long-term structures is clearly visualized.

- > The use of *Structure* events **does improve** the model's compositions.
- > As a composer, the *Transformer* is in fact still **far behind humans**.
- > Nevertheless, its **shortcomings** are pointed out by **our objective metrics**.

The models' knowledge of Jazz music is gained along the training process, and peaks at training loss level 0.25.

> Our metrics also shed new light on the evaluation of machine compositions; and,

set some goals for future work in automatic music composition to pursue.

