

Metric Learning VS Classification for Disentangled Music Representation Learning Jongpil Lee¹, Nicholas J. Bryan², Justin Salamon², Zeyu Jin², Juhan Nam¹

Representation Learning

• **Deep representation learning** offers a powerful paradigm for mapping input data onto an organized embedding space and is useful for many music information retrieval tasks.

Content-based Music Retrieval

Multidimensional Retrieval Euclidean space **Genre Axis** x f(x) Hans Zimmer - Time (song) Instrument \bigcirc tronic (tag) The Chemical Brothers - No Geography (song empo Axis

- holistic manner.

¹KAIST, Daejeon, South Korea ²Adobe Research, San Francisco, United States

https://jongpillee.github.io/metric-vs-classification/

Summary

• Two central methods for representation learning include **deep** metric learning and classification.

• The emerging concept of **disentangled representations** is also of great interest, where multiple semantic concepts (e.g., genre, mood, instrumentation) are learned jointly but remain separable in the learned representation space.

• In this paper, we present **a unified representation learning** framework that can perform example-based retrieval, tag-based retrieval, and multidimensional retrieval in a

• (1) we first outline past work on **the relationship between** metric learning and classification.

• (2) then, we extend this relationship to multi-label data by exploring three different learning approaches and their disentangled versions.

• (3) Finally, we evaluate all models on four tasks (training time, similarity retrieval, auto-tagging, and triplet prediction).

• As a result, we find that **classification-based models** are generally advantageous for training time, similarity retrieval, and auto-tagging, while deep metric learning exhibits better performance for **triplet-prediction**.

• At last, we show that our proposed approach yields state-of-the-art results for music auto-tagging and similarity-based retrieval.

Experiments

• Million Song Dataset (MSD) with Last.FM tag annotations

• 50 tags (28 genres, 12 moods, 5 instruments, 5 eras)

• 201680, 11774, 28435 tracks for train, validation, and test sets

• 3 second excerpts based deep inception backbone model

retrieval cases and then we compare the models.

Dim-Sim Dataset

https://jongpillee.github.io/multi-dim-music-sim/ https://zenodo.org/record/3889149#.X3gtaJMzbyW

- A user-annotated music similarity triplet ratings
- linked to the Million Song Dataset (MSD)
- 4,000 3-second triplets, 39,440 human annotations

Models

• We connect the relationship between **classification** and **metric** learning using proxy-based metric learning. Then, we develop their disentangled version of the models to perform all the three

Evaluations

Tasks	Evaluation Metrics		
Tag-based Retrieval	Tagging Performance	AUC	
Example-based Retrieval	Similarity Performance	R@K	
Multidimensional Retrieval	Triplet Prediction	Acc.	
Training Efficiency	Training Time	Ratio	

Results

Results for training time, similarity-based retrieval, and auto-tagging

Models	ls Normalization Disentanglement		Training time	Similarity-based retrieval				Auto-tagging
		c	ratio	R@I	R@2	R@4	R@8	AUC
Triplet	1	×	1.87	31.8	45.2	59.9	73.0	0.815
Triplet	1	1	2.37	36.5	50.5	64.1	76.0	0.825
Triplet + track reg.	\checkmark	\checkmark	3.05	33.9	47.5	61.9	74.3	0.813
Proxy	\checkmark	×	1.11	45.0	58.5	71.0	80.9	0.890
Proxy	\checkmark	\checkmark	1.29	44.7	58.2	70.7	80.6	0.890
Classification	×	×	1.00	6.1	11.5	21.1	35.9	0.887
Classification	\checkmark	×	1.00	43.8	57.8	70.3	80.3	0.887
Classification	1	1	1.27	44.7	58.4	70.7	80.9	0.890

Results for triplet prediction

Embedding space	Models	Normalization	Disentanglement	Genre	Mood	Instruments	Era	Overall
Complete space	Triplet	1	×	0.771	0.725	0.653	0.701	0.712
	Triplet	1	1	0.762	0.744	0.696	0.733	0.733
	Triplet + track reg.	1	✓	0.757	0.733	0.673	0.715	0.720
	Proxy	1	×	0.774	0.742	0.645	0.693	0.714
	Proxy	1	1	0.762	0.742	0.660	0.716	0.720
	Classification	×	×	0.783	0.745	0.659	0.723	0.728
	Classification	1	×	0.776	0.747	0.647	0.704	0.719
	Classification	1	1	0.758	0.742	0.659	0.715	0.719
Sub-space	Triplet	1	1	0.790	0.785	0.798	0.797	0.792
	Triplet track reg.	1	1	0.775	0.748	0.743	0.742	0.752
	Proxy	1	1	0.777	0.740	0.734	0.700	0.738
	Classification	1	1	0.775	0.739	0.732	0.701	0.737

Visualization of Disentangled Space

 The highlighted samples are relatively scattered when considering all dimensions, but well clustered when considering only **the** instrument sub-space.

(a) All-dimensions

