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MOTIVATION

Disentangled representations are low-dimensional representations
learnt from high-dimensional data such that the underlying factors of
variation are well-separated.
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Observed Data Disentangled Representation

Lack of diversity in disentanglement studies
 majority of methods evaluated using image-based datasets
e easy availability of image-based benchmarking datasets?

Lack of consistency in music-based studies
e different datasets used for different studies
* no single benchmarking dataset with well-defined factors of variation

Create a simple, algorithmically generated music-based

dataset with clearly defined factors of variation

KEY DESIGN PRINCIPLES

* Homogenous: Easy to differentiate between data-points

 Orthogonal factors: Changes to one factor should not affect the others.
There should be a one-to-one mapping between unique combination of latent
factors and the generated datapoints.

* Diverse types of factors: Should include categorical & ordinal attributes
* Large size: Sufficient to train deep neural networks

L For instance, dSprites, 3D-shapes, MPI3D

[13] Higgins et al., “B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework,” in ICLR, 2017
[15] Kim and Mnih, “Disentangling by Factorizing,” in ICML, 2018.

[29] Burgess et al., “Understanding disentangling in B-VAE,” in NIPS Workshop, 2017.

[45] Pati et al., “Learning to Traverse Latent Spaces for Musical Score Inpainting,” in ISMIR, 2019.

* 2-bar monophonic Factor

DATASET CONSTRUCTION

# Options Notes

Tonic 12 C, C#, D, ..., through B

melodies: based on

_ Octave 3 Octaves 4, 5, and 6
different scales Scale 3 Major, Harmonic Minor, Blues
¢ ArpegglOS based on the I- Rhythm Bar 1 28 €2, based on onset locations of 6 notes
I\V-V-| cadence chord pattern Rhythm Bar 2 28 C2, based on onset locations of 6 notes
with 12 notes per melody. Arp Chord 1 2 up/down
Arp Chord 2 2 up / down
. .
2 c1ord§ / bqr. rhythm of 2o Chord 3 T u/ down
each bar is varied Arp Chord 4 5 up / down
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Arp Chord 3:up  Arp Chord 4: down

Tonic: C, Octave: 4

Rhythm Bar 1: 7

Scale: Major Arp Chord 1: up Arp Chord 2: up

1,354,752 unique melodies

BENCHMARKING EXPERIMENTS

* 3 methods: B-VAE [13], Annealed-VAE [29], Factor-VAE [15]
e 2 architectures: CNN-based, Hierarchical RNN-based [45]
e Compare against CNN-based model trained on dSprites
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Fig. 3 (top-right is better) Fig. 4 (higher is better)

* Disentanglement (Fig. 1) is comparable across datasets and models

* Reconstruction accuracy (Fig. 2) for dMelodies is significantly worse

* Sensitivity to hyperparameters (Fig. 3) is significantly higher for dMelodies

 Some factors such as octave and rhythm are better disentangled while
binary factors perform the worst (Fig. 4) .

KEY TAKEAWAYS

Unsupervised methods do not generalize across domains

Improving disentanglement while maintaining
reconstruction fidelity was hard

Modeling diverse factors of variation was challenging
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