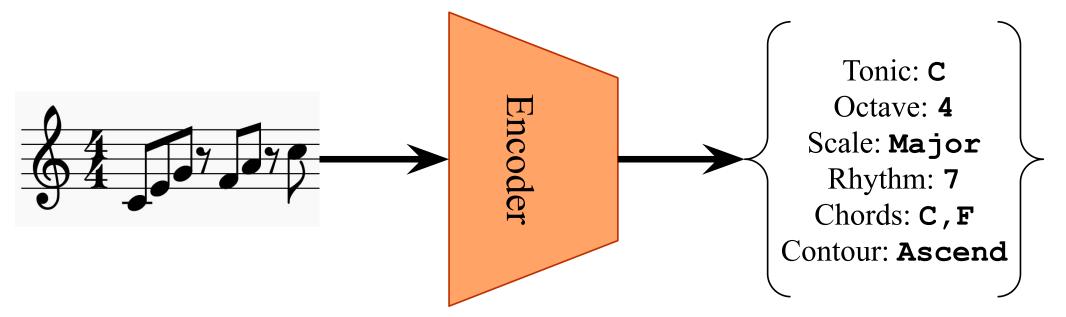
dMelodies: A Music Dataset for Disentanglement Learning

Ashis Pati | Siddharth Gururani | Alexander Lerch

MOTIVATION

Disentangled representations are low-dimensional representations learnt from high-dimensional data such that the underlying factors of variation are well-separated.



Observed Data

Disentangled Representation

Lack of diversity in disentanglement studies

- majority of methods evaluated using image-based datasets
- easy availability of image-based benchmarking datasets¹

Lack of consistency in music-based studies

- different datasets used for different studies
- no single benchmarking dataset with well-defined factors of variation

Create a simple, algorithmically generated music-based dataset with clearly defined factors of variation

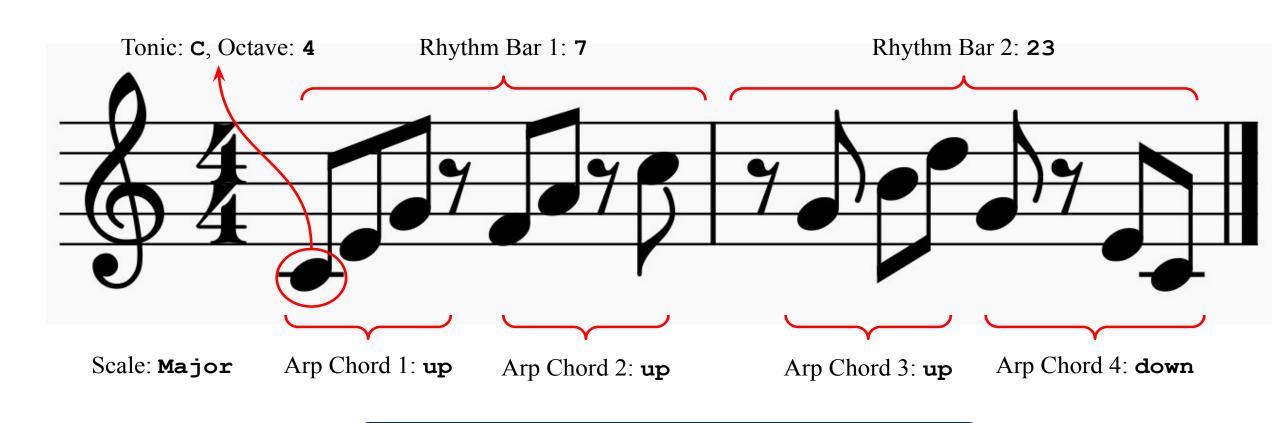
KEY DESIGN PRINCIPLES

- **Homogenous**: Easy to differentiate between data-points
- Orthogonal factors: Changes to one factor should not affect the others. There should be a one-to-one mapping between unique combination of latent factors and the generated datapoints.
- **Diverse types of factors**: Should include categorical & ordinal attributes
- Large size: Sufficient to train deep neural networks

DATASET CONSTRUCTION

- 2-bar monophonic melodies: based on different scales
- Arpeggios based on the I-IV-V-I cadence chord pattern with 12 notes per melody.
- 2 chords / bar: rhythm of each bar is varied

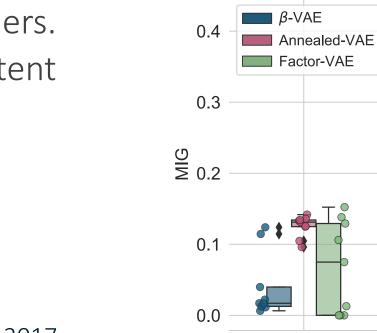
Factor	# Options	Notes
Tonic	12	C, C#, D,, throu
Octave	3	Octaves 4, 5, and
Scale	3	Major, Harmonic
Rhythm Bar 1	28	\mathcal{C}_6^8 , based on onse
Rhythm Bar 2	28	\mathcal{C}_6^8 , based on onse
Arp Chord 1	2	up/down
Arp Chord 2	2	up/down
Arp Chord 3	2	up/down
Arp Chord 4	2	up/down

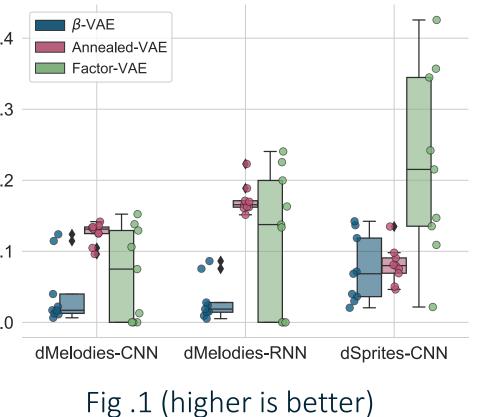


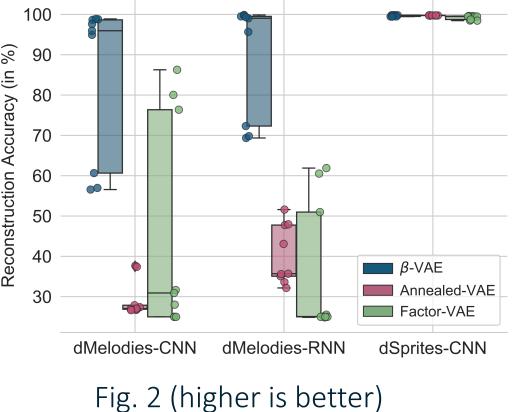
1,354,752 unique melodies

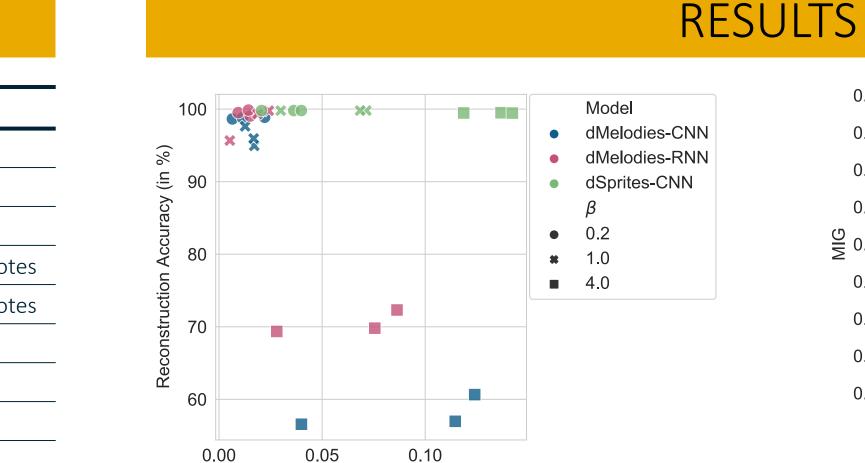
BENCHMARKING EXPERIMENTS

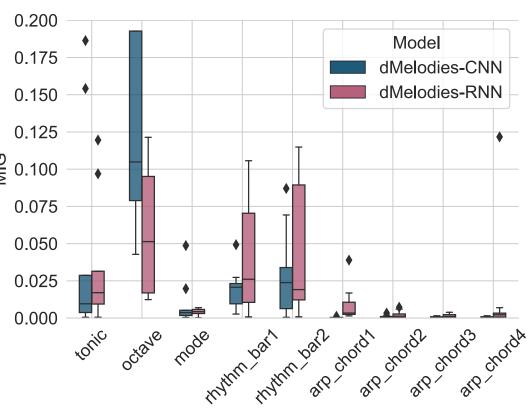
- **3 methods:** β-VAE [13], Annealed-VAE [29], Factor-VAE [15]
- **2 architectures**: CNN-based, Hierarchical RNN-based [45]
- Compare against CNN-based model trained on **dSprites**











- Minor, Blues
- set locations of 6 notes set locations of 6 notes

- **Disentanglement** (Fig. 1) is **comparable** across datasets and models
- **Reconstruction accuracy** (Fig. 2) for dMelodies is significantly worse
- **Sensitivity** to hyperparameters (Fig. 3) is **significantly higher** for dMelodies
- Some factors such as octave and rhythm are better disentangled while binary factors perform the worst (Fig. 4).

KEY TAKEAWAYS

Unsupervised methods do not generalize across domains

Improving disentanglement while maintaining reconstruction fidelity was hard

Modeling diverse factors of variation was challenging

CONTACT

Ashis Pati Music Informatics Group Center for Music Technology Georgia Tech ashis.pati@gatech.edu

Fig. 4 (higher is better)

¹ For instance, dSprites, 3D-shapes, MPI3D

^[13] Higgins et al., "β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework," in ICLR, 2017

^[15] Kim and Mnih, "Disentangling by Factorizing," in ICML, 2018.

^[29] Burgess et al., "Understanding disentangling in β -VAE," in NIPS Workshop, 2017.

^[45] Pati et al., "Learning to Traverse Latent Spaces for Musical Score Inpainting," in ISMIR, 2019.