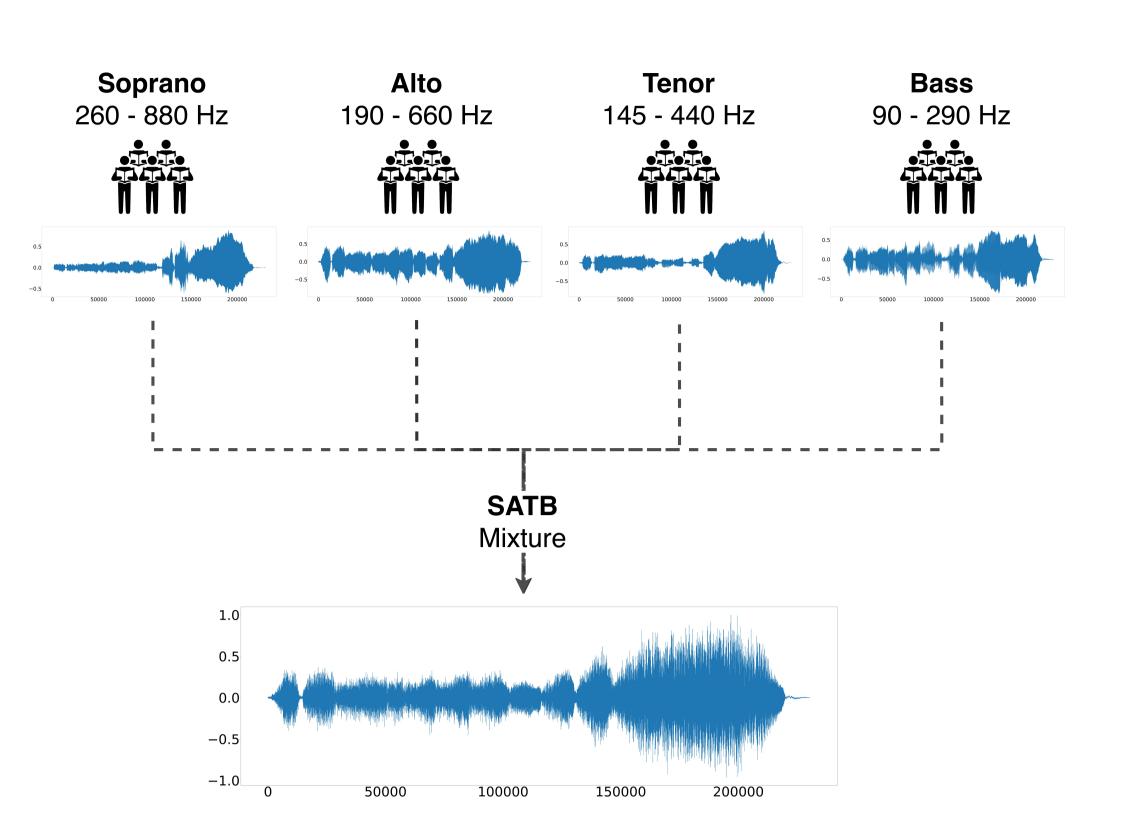
Deep Learning Based Source Separation Applied to Choir Ensembles

Darius Pétermann¹, Pritish Chandna¹, Helena Cuesta¹, Jordi Bonada¹, Emilia Gómez^{1, 2}

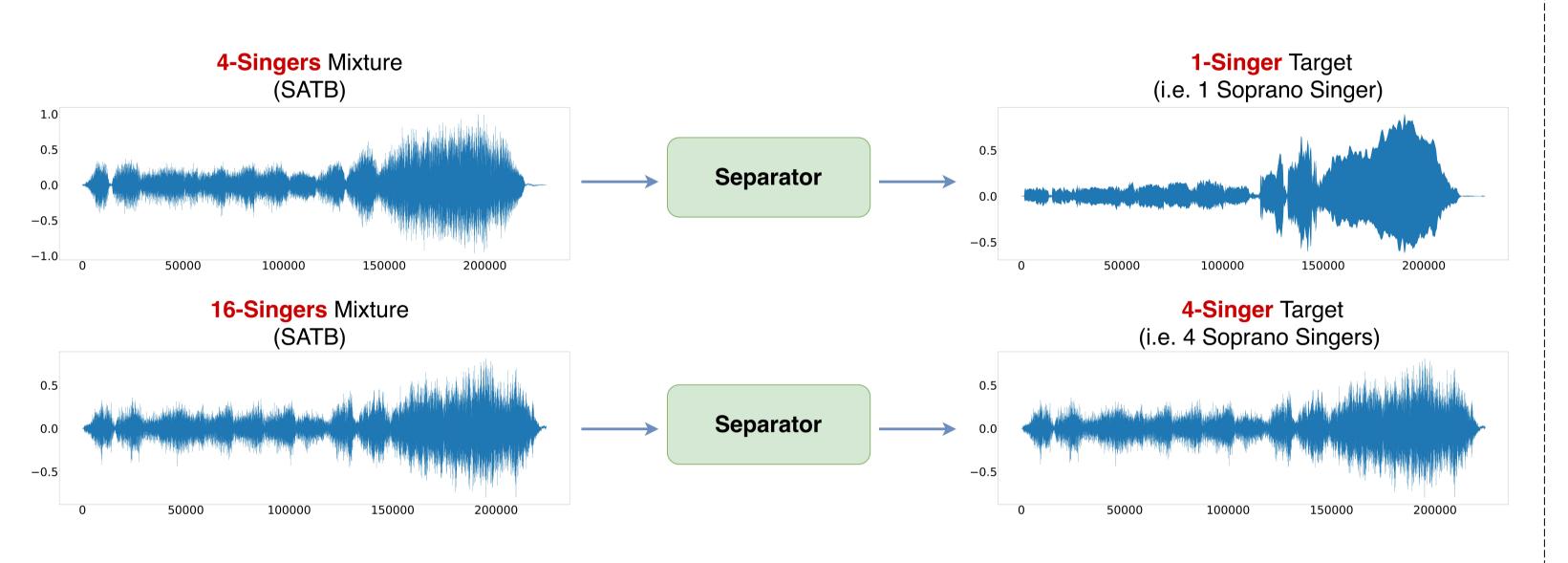
¹ Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain ² Joint Research Centre, European Commission, Seville, Spain

Background



- > **SATB** is a common type of choral setting.
- High correlation between the signals to be separated makes the separation process challenging.
- Each singing group performs within its own frequency range.

Task and Use-Cases



- The task consists in **isolating** each of the four SATB singing groups from a given choir mixture.
- > The task is divided into two different use-cases:
 - ➤ Use-case 1: Involves **4-singers** mixtures for **1 singer** exactly per singing part.
 - > Use-case 2: Involves 16-singers mixtures for 4 singers exactly per singing part.

State-of-the-Art & Adaptations

Models	Domain-Agnostic (D-A)	Domain-Specific (D-S)	Domain
Wave-U-Net [1]	✓		Waveform
U-Net [2]	✓		Spectrogram
Open-Unmix [3]	✓		Spectrogram
Conditioned-U-Net D-A [4]	✓		Informed Spec.
Conditioned-U-Net D-S Local		√	Informed Spec.
Conditioned-U-Net D-S Global		✓	Informed Spec.

- ➤ Recent deep learning architectures used for musical source separation are evaluated, specifically on our task. These models are referred to as "domain-agnostic", or "D-A".
- Two direct adaptations of the *Conditioned-U-Net* are then proposed (denoted in red). These adaptations consider information conveyed by the sources (i.e. **F0 track**) to improve the separation process; they are described as "domain-specific", or "D-S".

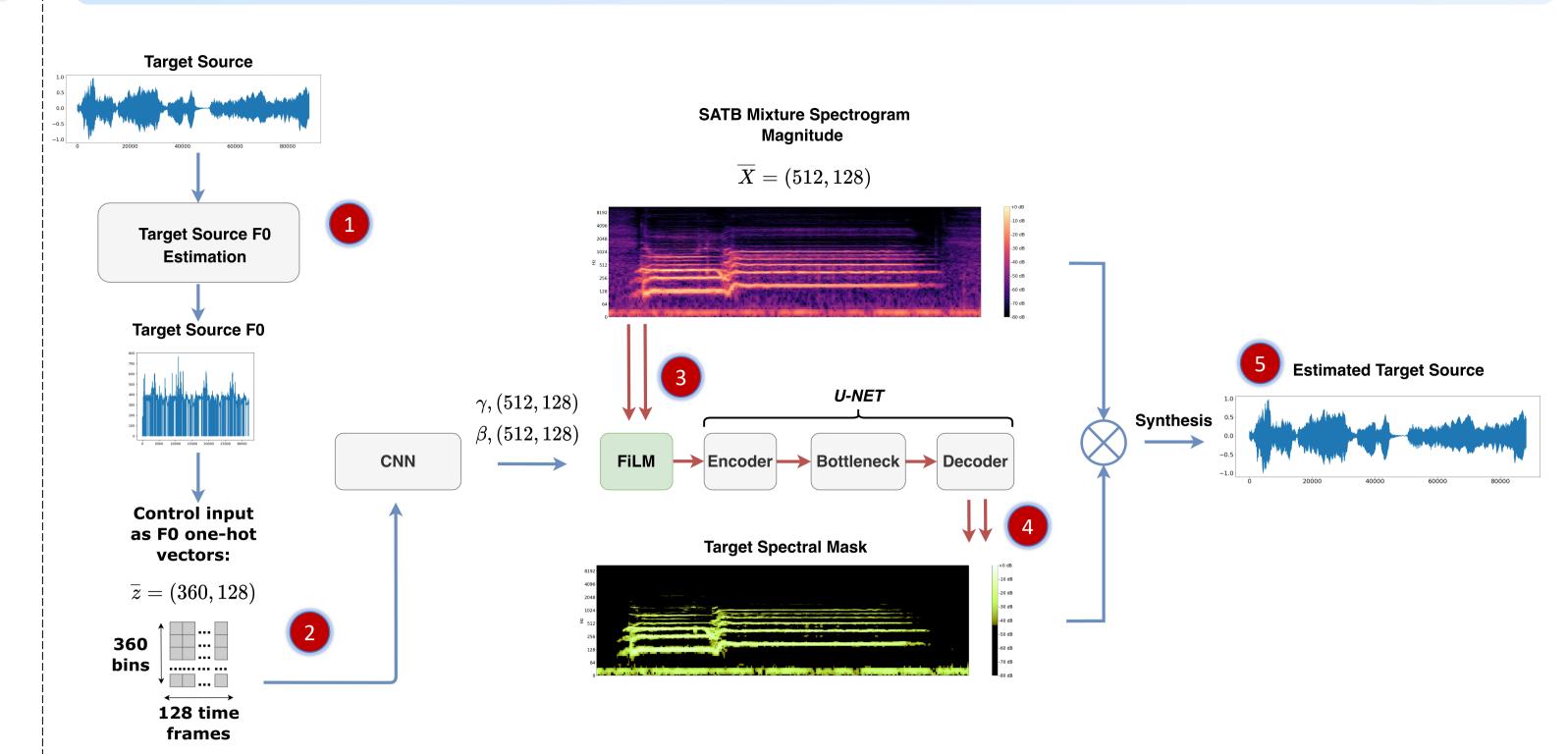
Dataset & Train-Test Split

- The *Choral Singing Dataset*, containing 3 songs for 16 stems per songs (4 singers per singing group), as well as a **proprietary dataset** consisting of 25 songs for 4 stems per song (1 singer per singing group), were used for training and testing.
- Due to the limiting nature of the datasets, **training** was performed using portions of both datasets on a **4-singers mixture-basis**, for both use-cases.
- > Testing was performed as follows for the two use-cases:
 - > Use-Case 1: One singer per singing group was set aside for evaluation.
 - ➤ Use-Case 2: The entirety of the *Choral Singing Dataset* was used for evaluation.

Universitat Pompeu Fabra *Barcelona*

MTG Music Technology Group

Domain-Specific Conditioned-U-Net



- Target source's **F0 track** is obtained through an F0 estimation algorithm [5].
- The U-Net output the target's spectral mask.
- The F0 track is then converted into a **2-D** one-hot matrix and input into a CNN.
- The input spectrogram is transformed by the set of scalars output by the CNN.
- The predicted target source is synthesized using the resulting magnitude spectrogram and the phase from the input mixture.

Objective Evaluation: BSS Eval

\mathbf{Model}	Test Use-Case 1 - SDR (dB)						
	Soprano	Alto	Tenor	Bass	Avg.		
$\overline{Wave-U-Net}$	2.03 ± 2.2	4.59 ± 2.7	0.92 ± 2.9	2.72 ± 2.5	2.56 ± 2.3		
$U ext{-}Net$	3.78 ± 2.1	5.15 ± 3.7	2.29 ± 2.7	$3.22 {\pm} 1.5$	3.61 ± 2.5		
$C ext{-}U ext{-}Net \ D ext{-}A$	3.57 ± 2.0	2.05 ± 2.1	-1.25 ± 2.6	1.96 ± 2.2	1.58 ± 2.2		
$Open ext{-}Unmix$	5.61 ± 2.1	5.70 ± 2.3	1.60 ± 1.7	3.66 ± 2.2	4.14 ± 2.1		
$C\text{-}U\text{-}Net\ D\text{-}S\ L$	3.70 ± 1.3	6.99 ± 1.9	3.82 ± 1.6	3.74 ± 1.7	$4.56{\pm}1.6$		
C-U-Net D-S G	5.76 ± 1.2	7.67 ± 1.5	5.39 ± 1.4	4.07 ± 1.8	5.73 ± 1.5		

\mathbf{Model}	Test Use-Case 2 - SDR (dB)					
	Soprano	Alto	Tenor	Bass	Avg.	
$\overline{Wave - U - Net}$	3.30 ± 1.6	4.73 ± 0.8	2.09 ± 2.0	$1.24{\pm}1.4$	$2.84{\pm}1.5$	
$U ext{-}Net$	5.14 ± 1.5	6.63 ± 1.0	$4.74 {\pm} 1.7$	3.12 ± 1.6	$4.91 {\pm} 1.4$	
$C\text{-}U\text{-}Net\ D\text{-}A$	$4.61 {\pm} 1.8$	2.67 ± 2.7	0.52 ± 2.8	1.98 ± 1.6	2.45 ± 2.2	
$Open ext{-}Unmix$	6.67 ± 2.1	6.49 ± 1.3	2.70 ± 1.6	3.49 ± 2.0	4.83 ± 1.7	
$C\text{-}U\text{-}Net\ D\text{-}S\ L$	4.34 ± 0.9	7.06 ± 1.2	4.77 ± 1.6	3.48 ± 1.5	4.91 ± 1.3	
C-U-Net D-S G	5.34 ± 1.2	$6.44 {\pm} 1.4$	4.93 ± 1.5	3.18 ± 1.1	4.97 ± 1.3	

Extensive BSS Eval results (SDR, SIR, SAR) as well as audio examples can be found at the following: https://darius522.github.io/satb-source-separation-results/

Results and Discussion

- Introducing **domain-knowledge** (i.e. F0 track) during training and inference improves the model's separation performance on the four SATB parts for both use-cases.
- The improvement gap between domain-agnostic and domain-specific models is less evident on **the second use-case**. This could be explained by the fact that **the mean of the various pitches** present in a singing group is not necessarily representative of the true underlying pitch of the unison.

References

- [1] D. Stoller, S. Ewert, and S. Dixon, (2018) "Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation"
- [2] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde, (2017) "Singing Voice Separation with Deep U-Net Convolutional Networks"
- [3] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, (2019) "Open-unmix a reference implementation for music source separation"
- [4] Meseguer-Brocal, Gabriel & Peeters, Geoffroy. (2019). Conditioned-U-Net: Introducing a Control Mechanism in the U-Net for Multiple Source Separations.
- [5] H. Cuesta et al., (2020) "Multiple F0 Estimation in Vocal Ensembles using Convolutional Neural Networks"

