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PROFILES

determining hit songs

INTRODUCTION

COLLABORATIONS ARE MORE POPULAR THAN EVER
Collaborative Hit Songs on Billboard Hot 100 (1958 - 2020)
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OBJECTIVE

Does the regional aspect impact on popular genres
and their hit songs?
How has genre collaboration evolved over the past
few years?
Which are the potentially intrinsic factors and
indicators that influence the collaboration success?
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BUILD MODEL DETECT
Proper dataset Success-based Collaboration
Genre Network Profiles

SPOTIFY API DATA
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| Does the regional aspect impact on popular genres and

their hit songs?

MOST POPULAR MUSIC GENRES IN EACH CONSIDERED MARKET (2017 - 2019)
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collaborative hit
songs are sung by
two or more artists,
regardless of their

participation (e.g. a typical
feat. or a duet)
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one-mode network

in which nodes are
exclusively genres, where

edge weight is the

number of hit songs by
artists from both genres
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self-loops are allowed an
represent intra-genre
collaborations

How has genre collaboration evolved over the past few years?
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AUSTRALIA

GENRE COLLABORATIONS PROFILES

EXPLORATORY FACTOR ANALYSIS
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COLLABORATION PROFILING
COLLABORATION PROFILES FOR ALL MARKETS (2019)
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Which are the potentially intrinsic factors and indicators that
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influence the collaboration success?

MEDIAN NUMBER OF STREAMS
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further research tasks,

e.g.,, prediction and
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