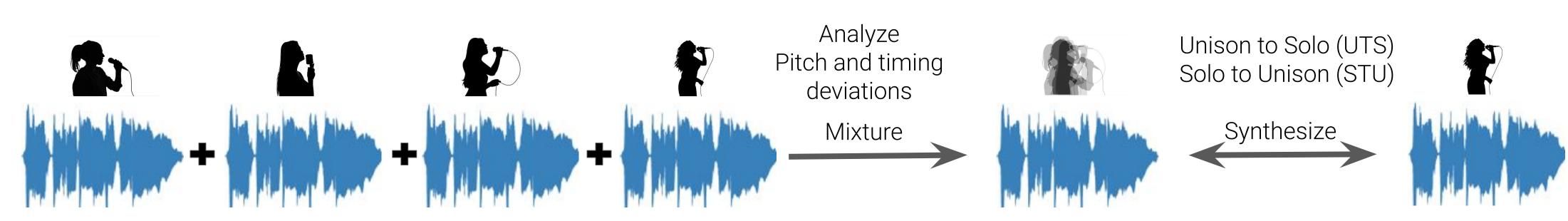
A Deep Learning based Analysis-Synthesis Framework for Unison Singing

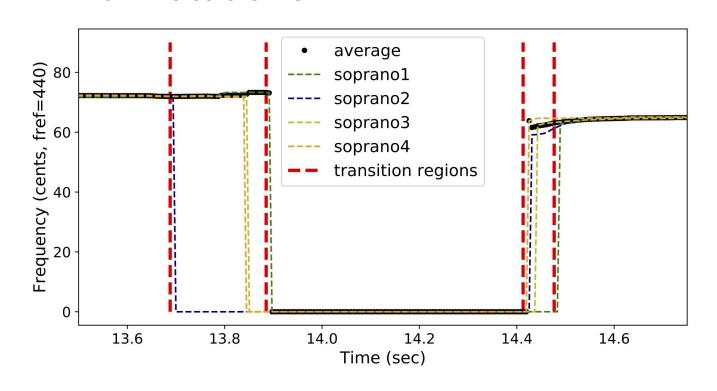

Pritish Chandna¹, Helena Cuesta¹, Emilia Gómez^{2,1}

Music Technology Group, Universitat Pompeu Fabra (Barcelona)
 Joint Research Centre, European Commission (Sevilla)

(1) Motivation

Leverage recently developed Deep Learning technologies to analyse real world SATB choral unison singing and facilitate synthesis of Unison from A Capella Input and A Capella from Unison Input.

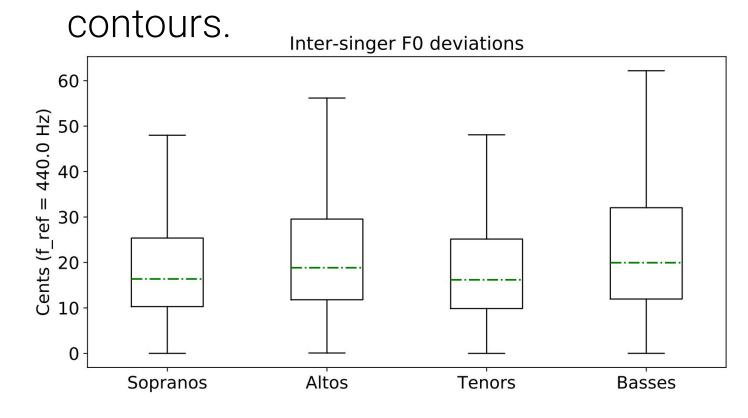
Multiple singers simultaneously singing the same content. Natural pitch and timing deviations. Timbral ensemble.

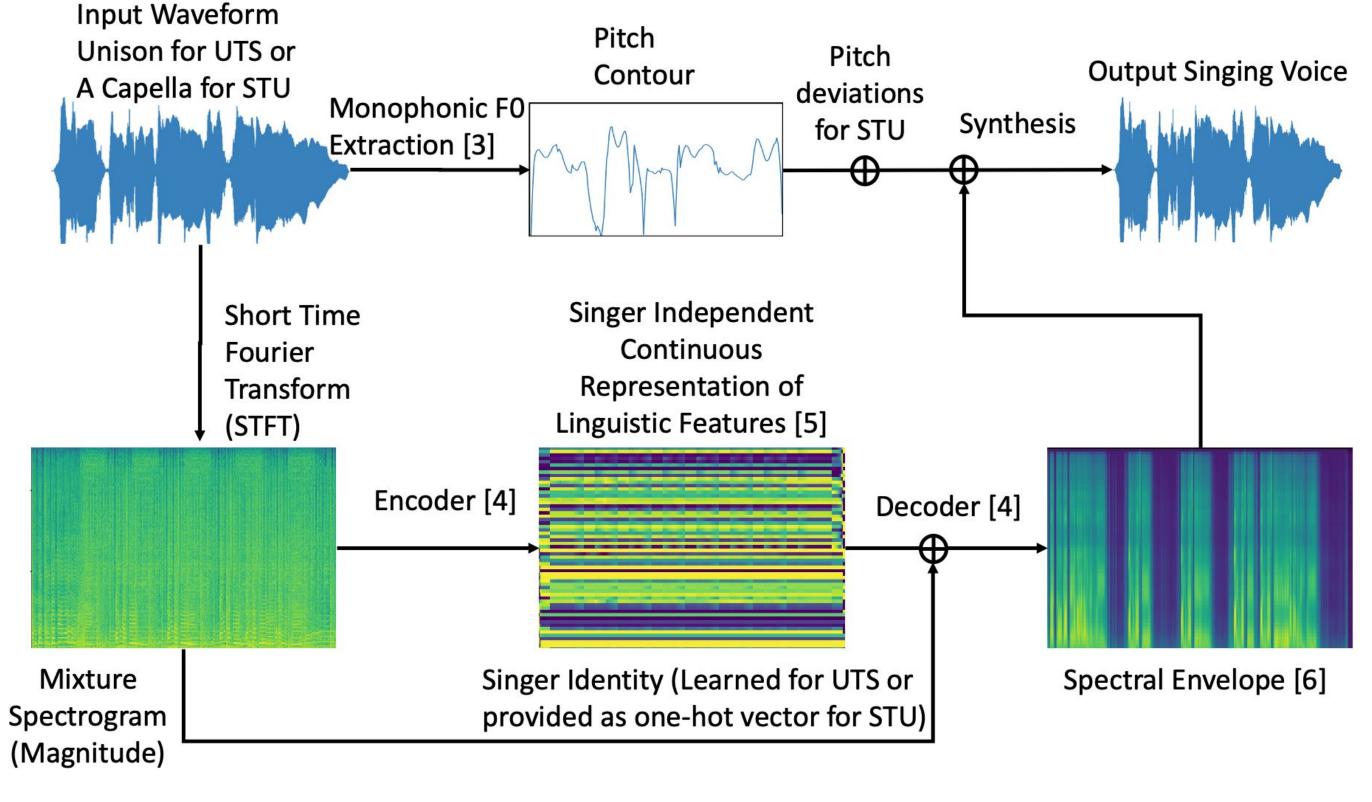

Unison Singing.
Single Perceived Pitch [1]

A Capella Solo Singing

² Unison Singing Analysis

Choral Singing Dataset (CSD) [2]


- 3 SATB choir songs
- 16 singers
- 4 singers per section
- Manually corrected F0 annotations


Timing deviations are computed at the *transition regions* (voiced ↔ unvoiced), where singers are not entirely in sync.

Section	Average Timing Deviation \pm Standard Deviation		
Soprano	$0.134 \pm 0.039~\mathrm{sec}$		
Alto	$0.093 \pm 0.0024~{ m sec}$		
Tenor	$0.100 \pm 0.021~\text{sec}$		
Bass	$0.124\pm0.021~\mathrm{sec}$		

Inter-singer F0 deviations (Δ F0s) computed for each pair of singers in the unison as the frame-wise difference between the two F0

(3) Synthesis Methodology

- F0 extracted by monophonic F0 extractor [3] used for single pitch for UTS.
- Encoder-Decoder [4] trained on proprietary dataset, no overlap with CSD.
- Singer independent linguistic features as used in Voice Conversion algorithms [5].
- Gender specific timbre changes for STU.
- Pitch deviations sampled from normal distribution.
- Timing deviations implemented using circular shifts between regions of silence.
- WORLD [6] vocoder features used for synthesis.

(4) Subjective Evaluation

Test Case	Adherence To Melody	Unison Perception	Audio Quality
UTS	3.6 ± 0.93		2.1 ± 0.65
STU_PS	3.3 ± 0.83	2.6 ± 0.85	2.8 ± 0.45
STU_PTS	2.9 ± 1.14	3.2 ± 0.96	3.1 ± 0.63
STU_TS		2.3 ± 1.11	
STU_PT		3.0 ± 1.23	

- STU with Pitch (P), Timing (T) and Singer (S) variations.
- Adherence to melody shows F0 extracted by CREPE [3] can be viewed as a representation of single perceived pitch of the unison.
- **Timing and pitch variations** together are **necessary** for perception of unison.
- Timbre variations do not make significant improvement to the

5 References

- [1] S. Ternström, "Perceptual evaluations of voice scatter in unison choir sounds", STL-Quarterly Progress and Status Report, vol. 32.
- [2] H. Cuesta, et al. **"Analysis of intonation in unison choir singing"**, in Proceedings of the International Conference of Music Perception and Cognition (ICMPC), 2018.
- [3] J. W. Kim, et al. "CREPE: A Convolutional REpresentation for Pitch Estimation", in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.
- [4] P. Chandna, et al. "Content based singing voice extraction from a musical mixture", in Proceedings of the 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
- [5] K. Qian, et al. "Autovc: Zero-shot voice style transfer with only autoencoder loss", in International Conference on Machine Learning, 2019.
- [6] M. Morise, et al. "World: avocoder-based high-quality speech synthesis system for real-time applications", in IEICE TRANSACTIONS on Information and Systems, vol. 99, 2016.

