DrumGAN: Synthesis of Drum Sounds With Timbral Feature Conditioning Using GANs

Javier Nistal, Stefan Lattner, and Gaël Richard

Introduction

Audio synthesizers have complicated parameters with little perceptual correspondence nor musical meaning. Also, the type of sounds they can produce are limited by the synthesis **method** (e.g. additive, subtractive).

DrumGAN is a Progressive Growing GAN (PGAN) that can synthesize a wide variety of drum sounds and that enables steering the synthesis according to parameters that respond to human perception.

Dataset

- ~300k one-shot, 1s-long and aligned audio samples
- Kicks (K), Snares (S) and Cymbals (C) classes
- 16kHz sampling-rate
- ✤ 90/10% train-validation split
- **Complex STFT** representation
- \succ window size: 2048
- \succ hop size: 512

Audio-Commons Features

- <u>Audio Commons</u> perceptual models \rightarrow high-level timbral features of the sound
- Human ratings given to sounds from Freesound
- Linear regression models of spectral and temporal low-level features (e.g., spectral centroid, dynamic-range)
- All features are normalised to the range [0-1]

Brightness Boominess Hardness Warmth Depth Sharpness Roughness

*

*

Brightness

Hardness, etc

MSE

LOSS

conditional

features (c)

Results

Models. Three conditions are examined:

2,18

Feature predictions (c')