
Multiple F0 Estimation in Vocal Ensembles using 
Convolutional Neural Networks

• Late concatenation of magnitude & phase information works better than 
early concatenation. 

• Our models look robust to increased pitch resolution (100 vs. 20 
cents). 

• We need further experiments on unisons and commercial 
recordings.  

• Post-processing of the outputs is necessary!  
• Additional steps: voice tracking and assignment.
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We present and evaluate a set of CNNs for multiple F0 estimation in vocal quartets. We use the magnitude and phase 
differentials of the HCQT as input to the networks and build upon an existing system to produce a pitch salience 
representation of the input signal. We construct a dataset that comprises several multi-track polyphonic singing datasets 
for training and evaluation. Our model can be used with polyphonic recordings in the wild and outperforms two baseline 
methods on the same data.
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• Analysis of ensemble singing commonly requires individual recordings 
of each voice and/or individual F0 curves. 

• Intonation analysis, source separation, and automatic transcription 
benefit from multi-F0 estimation. 

• We can obtain individual F0 curves from mixed, polyphonic recordings of 
vocal quartets. 

• Work based on DeepSalience [1].

Motivation

Dataset Availability Configuration Duration  
(mm:ss)

Choral Singing Dataset [2]
Public

16 singers, SATB 07:14

Dagstuhl ChoirSet [3] 13 singers, SATB 55:30

ESMUC Choir Dataset

Private

13 singers, SATB 21:08

Barbershop Quartets 4 singers, LTBB 42:10

Bach Chorales 4 singers, SATB 58:20

• Harmonic constant-Q transform 
(HCQT). 

• 60 bins/octave, 20 cents/bin, 6 
octaves, h=[1,2,3,4,5]. 

• Magnitude & phase differentials 
• Targets are Gaussian-blurred 

binary time-frequency 
representations.

• Compile 5 multi-track datasets of polyphonic vocal music. 
• Public + proprietary datasets. 
• F0 annotations for each voice in the ensemble. 
• Combine voices to create all possible SATB quartets (intra-dataset).

Listen to the results!

Experiment 1: fusion strategy / depth of the network / phase 
differentials

Experiment 2: comparison to baseline / pitch tolerance

•Best performance Late/Deep 
with phase differentials. 

•Very similar overall results (F-
Score). 

•Precision increases with phase 
information.

•Late/Deep outperforms baselines on the Barbershop dataset. 
•Robust to smaller pitch tolerances - higher pitch resolutions.

Experiment 3: generalization
• Outperform baseline on a small dataset of commercial choir recordings 

[6]: Late/Deep 70% F-Score / Baseline [6] 65% F-Score. 
• Training set w/ dry & reverb signals increases the generalization 

capabilities of the models in several recording conditions.

Earl\/ShalloZEarl\/Deep LaWe/Deep L/D�no­phase
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F­ScRUH

81.4% 81.7% 82% 81.7%

Test set average F-Score 

System overview

Data collection

Input features

Experimental results

CNN architectures

Conclusions & limitations

[1] R. M. Bittner et al. “Deep salience representations for F0 tracking in polyphonic music,” in Proc. of 
ISMIR, 2017. 
[2] H. Cuesta et al. “Analysis of intonation in unison choir singing,” in Proc. of ICMPC, 2018. 
[3] S. Rosenzweig et al. “Dagstuhl ChoirSet: A Multitrack Dataset for MIR Research on Choral Singing,” 
in TISMIR, vol. 3, no. 1, pp. 98– 110, 2020. 
[4] R. Schramm & E. Benetos. “Automatic transcription of a cappella recordings from multiple singers,” 
in Proc. of the AES Conference. 2017. 
[5] A. McLeod et al. “Automatic transcription of polyphonic vocal music”. In Applied Sciences, vol. 7, np. 
12. 2017. 
[6] L. Su et al. “Exploiting frequency, periodicity and harmonicity using advanced time-frequency 
concentration techniques for multipitch estimation of choir and symphony,” in Proc. of ISMIR, 2016.

References

[4]

[5]

Conv2D 
16 filters 

5x5

Conv2D 
16 filters 

5x5

360

50
5

360

50
5

Input2: phase differentials

Input1: HCQT Magnitude

concatenate
Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

70x3

Conv2D 
32 filters 

70x3

Conv2D 
64 filters 

3x3

Conv2D 
64 filters 

3x3

Conv2D 
8 filters 
360x1

360

50

Output

activation map

(a) Early/Shallow & Early/Deep (incl.            ) 

(b) Late/Deep

360

50
5

360

50
5

Input2: phase differentials

Input1: HCQT Magnitude

360

50

Output

activation map

360

50
5

360

50
5

Input2: phase differentials

Input1: HCQT Magnitude

360

50

Output

activation map

(a) Early/Shallow & Early/Deep (incl.            ) 

(b) Late/Deep

Conv2D 
16 filters 

5x5

Conv2D 
16 filters 

5x5

360

50
5

360

50
5

Input2: phase differentials

Input1: HCQT Magnitude

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

70x3

Conv2D 
32 filters 

70x3

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

5x5

Conv2D 
32 filters 

70x3

Conv2D 
32 filters 

70x3

concatenate
Conv2D 
64 filters 

3x3

Conv2D 
64 filters 

3x3

Conv2D 
8 filters 
360x1

360

50

Output

activation map

Magnitude (|H|) Phase differentials ( )dϕ /dt

f

t

h

t

f

Output salience

t

f

Multi-F0 output

peak picking & 
thresholding

(a)

Conv2D 
n x m

Conv2D 
n x m

Conv2D 
n x m…

CNN

(b) (c)

(d)(e)

Magnitude (|H|) Phase differentials ( )dϕ/dt

1 2

3

4

5

6

7

8

https://github.com/helenacuesta/multif0-estimation-polyvocals
https://helenacuesta.github.io/MultipleF0EstimationVocalEnsembles/Multiple%20F0%20Estimation%20in%20Vocal%20Ensembles%20using%20CNNs%20-%20Audio%20Examples.html

