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Introduction

Motivation: Music composition is often non-chronological by nature, with
motifs being added and inserted throughout the composition process. In
addition, autoregressive techniques are prone to accumulation of errors.
Our Work: We generate music using a non-chronological, autoregressive
model that is able to self-correct by adding or removing notes—even notes
previously generated by the model.

Human AI Collaboration: In our use case, users collaborate with the
model to enhance input melodies. Since we generate notes one-by-one and
non-chronologically, users have a finer degree of control during the human
AT collaboration process.

Music Generation Background

Previous approaches to music generation treat music as image generation or
as a time series problem analogous to autoregressive language modeling.

Our Approach: Takes elements from both image-based and time series
generation.

Coconet|1|—the model behind Google’s Bach Doodle—is another non-
chronological autoregressive music generation model. Rather than directly
modeling addition and removal of notes, Coconet uses GGibbs Sampling to
prevent accumulation of error.

We compare against a Gibbs sampling approach using Coconet,

What is a Piano Roll

Piano Roll: A 2D discrete representation of music as an image matrix
across time and pitch.

We can map musical pieces to piano rolls with the following definitions:

e I": Number of time steps

e P: Number of note pitches
e z: A point in {0, 1} which represents a piano roll. x € X
e p'%(x): A probability density function on {0, 1}
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Figure 1: A piano roll

Generating Music Using Edit Sequences

Edit Sequence: A tuple of edit events that can be mapped to a piano roll
Edit Event: A one-hot matrix e?) € {0,1}7*F
We model p™(z) as p*(s) on the set of edit sequences (ES)
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E: set of all edit events. £M: edit sequences of length M.
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Probability N: number of notes in the piano roll.
Distributions 7 }(z): inverse image of ().

(t;, p;): time and pitch of a note or edit event.
s: sequence of edit events (t1,p1) ... (trr, par) where M > N.
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Assumption: p™((t;, pi)|(t1, p1), - .., (ti—1, pi—1)) is ordering invariant.
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Figure 2: Mapping from an edit sequence (left) of length M to a piano roll (right). Each slice in an
edit sequence is the addition or remowval of a note.
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Model Training and Inference

We train the model to add and remove notes by masking existing notes and adding random
extraneous notes to each sample.

T Target piano roll; real piano rolls

Z: Input piano roll; piano rolls with masked and added notes

Dy Kullback-Leibler divergence

P: Softmax over the model’s output for all times and pitches

U:. Uniform distribution supported on ZAT.

Loss Function L(Z,T,P)=Dgr(P|U), (5)
Removing Random Notes From the Pianoroll Adding Random MNotes to the Pianoroll
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We sample from the model’s output probabilities through direct ancestral sampling.
Steps in a single inference iteration

e Feed the input melody to the model.

e Sample the next edit event from the softmax applied over all times and pitches.

e Modity the input based on that edit event.
e Feed that modified melody back into the model.

Empirical Evaluation

Human Opinion Survey We build an orderless NADE [3] model and use Coconet 1]
to represent a (Gibbs sampling approach

We trained using the JSB Chorales dataset *, and used Bach Doodle dataset [2] for input
melodies.

We see that our approach outperforms both orderless NADE and Gibbs
Sampling overall in Figure [3|

Improvements on Input

Figure 3: Human Survey Evaluation Ratings. (a) describes whether users thought samples improved on the

input. (b) describes user rankings for music quality. (c) describes user rankings for how similar a sample is
to real Bach data.
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