COMBINING MUSICAL FEATURES FOR COVER DETECTION

Guillaume Doras, Furkan Yesiler, Joan Serrà, Emilia Gómez, Geoffroy Peeters

Recent studies addressed the automatic cover detection problem with the metric learning paradigm, using various input features:

We compare these features with the same model using a time attention mechanism:

On two publicly available cover datasets, Crema-PCP — a harmonic feature — consistently yield the best results, followed by melodic features.

	-	Da-TACOS		SHS ₄₋			
Input	MAP	MT@10	MR1	MAP	MT@10	MR1	
Cq	0.215	2.468	94	0.397	0.718	886	
Dm	0.311	3.521	111	0.412	0.722	1431	
Мр	0.293	3.290	71	0.422	0.760	862	
Ch	0.121	1.476	117	0.174	0.371	1465	
Ср	0.375	4.084	86	0.499	0.842	1169	

(Cq = CQT, Dm = dominant melody, Mp = multi-pitch, Ch = chroma, Cp = CPCP)

different harmonic structure...

harmonic structure:

(see and listen to more examples on the Slack channel).

➡ This suggest that different features are complementary, and that merging them could benefit of this complementarity

For instance, these two covers have a similar melody, but a

... while these two covers have a different melody, but a similar

We combine these features with a simple averaging scheme define each pair of songs (x, y) new distance as the average of their distances obtained for different features, e.g.

Combining dominant melody — a melodic feature and Crema-PCP a harmonic feature — yields the best results.

Test set	Da-TACOS		SHS ₄₋			
Input	MAP	MT@10	MR1	MAP	MT@10	MR1
Cq+Dm	0.359	4.002	62	0.590	0.982	567
Cq+Mp	0.324	3.603	62	0.530	0.909	623
Cq+Cp	0.427	4.636	46	0.621	1.024	581
Dm+Mp	0.394	4.347	61	0.571	0.956	614
Dm+Cp	0.547	5.861	37	0.679	1.098	529
Мр+Ср	0.496	5.330	40	0.627	1.034	593

We also trained a new model to learn to combine these features:

Combining musical features yields new SoA results:

		Da-TACOS			SHS_{4-}			
Inp	out	MAP	MT@10	MR1	MAP	MT@10	MR1	
Dn	n (MICE)	0.360	4.032	94	0.412	0.722	1431	
Ср	(MOVE)	0.484	5.214	59	0.533	0.890	1188	
Dn	n+Cp (A)	0.621	6.613	32	0.697	1.120	517	
Dn	n+Cp (LF-a)	0.570	6.101	29	0.617	1.017	686	
Dn	n+Cp (LF-b)	0.592	6.318	32	0.655	1.059	655	
Dn	n+Cp (LF-c)	0.635	6.744	30	0.660	1.080	657	
Do	oras et al. [3]	n/a	n/a	n/a	0.323	0.615	1476	
Yesiler et al. [6]		0.507	-	40	n/a	n/a	n/a	

[1] Yu et al., "Learning a representation for cover song identification using convolutional neural network", ICASSP 2020 [2] Doras and Peeters, "Cover detection using dominant melody embeddings", ISMIR 2019

[3] Doras and Peeters, "A prototypical triplet loss for cover detection", ICASSP 2020

[4] Xu et al., "Key-invariant convolutional neural network toward efficient cover song identification", ICME 2019 [5] McFee and Bello, "Structured training for large-vocabulary chord recognition", ISMIR 2017

[6] Yesiler et al., "Accurate and scalable version identification using musically-motivated embeddings", ICASSP 2020

