
CONLON: A Pseudo-Song Generator Based on a New Pianoroll, Wasserstein Autoencoders,
and Optimal Interpolations

Luca Angioloni1 Tijn Borghuis2,3 Lorenzo Brusci3 Paolo Frasconi1
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Introduction

In this paper, we focus on the autonomous generation of polyphonic and multi-instrument MIDI
partitures, aiming at producing relatively long pseudo-songs (i.e. tracks that have the duration
of a song but whose temporal structure is not controlled by a compositional intent), that are
effectively usable in a professional context.
We do this through:
• the use of a novel pianoroll-like representation PRC .

• the use of Wasserstein autoencoders (WAE).

• the definition of strategies for exploring the WAE latent space.
We introduce two new datasets, especially composed and edited by musicians made aware of cre-
ating training sets for generative models: ASF-4 in Acid Jazz, Soul and Funk and 4 instruments;
HP-10 in High Pop and 10 instruments.
LPD-5 (5 instruments) was derived from the Lakh MIDI dataset [1] by Dong et al.

Novel representation: PRC

Binary pianorolls (PR) are among the most common representations. They are, however, a lossy
description of MIDI data in at least two ways. First, they do not include note velocities, second,
they make it impossible to distinguish between long notes and repeated occurrences of the same
notes.
The solution proposed in this paper uses a second channel that explictly represents note durations
as continuous variables. Our PRC description does not suffer the ambiguity between long notes
and repeated occurrences of the same note and, except for time quantization, is completely
lossless. (See Fig. 1)
In a multi-track context the tracks are stacked together on the channel axis.

Fig. 1: A short phrase described as PR (top right) and as PRC (bottom). Here we set quantization at 1/8.

Wasserstein Autoencoder

As a generative model, we experiment with Wasserstein autoencoders (WAE) [2], a type of
autoencoder that is less subject to the “blurriness” problem typically associated with variational
autoencoders (VAE). To the best of our knowledge, they have not been applied to music gener-
ation before.
WAEs penalize a measure of discrepancy D between the expected p(x|z) and the prior p(z),
pushing the expectation inside the distance as in equation:

min
q(z|x)

EpEq(z|x) c(x,G(z)) + λD(qz, pz) (1)

where c is a reconstruction loss and λ a hyperparameter to be fixed.
In all our experiments we employed the Maximum Mean Discrepancy (MMD) [3] for D and a
Gaussian prior, and we structured the encoder and the decoder as in the DCGAN [4] architecture,
based on 2D convolutional layers.

Generation Strategy

Our generation strategy is formulated as an optimization problem for exploring the autoencoder latent space
in a way that prevents abrupt transitions between consecutively generated patterns, as well as regions with
little variation.
A pseudo-song is generated by creating a trajectory of length T , z1, . . . , zT in the latent space, and applying
the generator model to each latent vector to produce a corresponding sequence of patterns.
We defined 2 strategies:

• Interpolations: where we pick a start pattern and a goal pattern and use the encoder to obtain a
start and goal points in the latent space; Trajectories are then computed with a linear or a spherical
interpolation.

• Swirls: where latent trajectories are produced by taking real and imaginary parts of periodic complex-
valued parametric functions as shown in Fig. 2 on the left.

Fig. 2: Latent trajectories produced by swirls in a 3D space on the left. On the right, trellis for trajectory smoothing. The horizon H is 2 in this

example. Among all paths from Start to Goal, the highlighted path is the one whose smallest edge weight is maximum.

Smoothness can be achieved by maximizing the minimum distance between consecutive reconstructions and
constraining the final length to L solving the following optimization problem:

max
t1,...,tL

min
i=1,...,L−1

δ(G(zti), G(zti+1)) (2)

s.t. 1 ≤ ti < ti+1 ≤ T i = 1, . . . L− 1 (3)

ti+1 − ti ≤ H i = 1, . . . L− 1 (4)

where δ is a distance function on patterns and H a lookahead horizon. (See Fig. 2 on the right)

Quantitative Evaluations

When only a limited amount of human expert time is available, it becomes difficult to cover all different
dimensions on which alternative methods can be compared. Rather that allowing non experts in our surveys,
it may be preferable to complement human evaluation with a number of automatically computed metrics.

Reconstruction Error

We aim to compare WAEs fed by PR vs WAEs fed by PRC . Precision and recall are defined on the binary
classification problem where the ground truth consists of Bernoulli variables y(t, n, i) = 1 if there is a
note-on event at time t for note n and instrument i. We considered as predictions the binary quantities
ŷ(t, n, i) = 1 if the reconstructed value of the velocity at (t, n, i) is above the smallest velocity in the
training set. For PR description, the predicted note-on event was the first element in the merged row of
consecutive predictions. We further considered the MAE in predicting velocities and durations. Test set
results comparing PR and PRC (everything else being equal) are reported in Tab. 1.

Tab. 1: Test set precision (P ), recall (R), mean absolute errors on velocity (V ) and duration (D) for PR and PRC .

Note Shattering

Results in Tab. 1 indicate that PR yields good recall but very low precision, and has a higher
error on velocity and duration. This can be partially explained by the presence of a high
number of shattered notes. To verify this hypothesis we computed the note number growth
due to shattering. For each note in the ground truth, identified by the triplet (n, i, T ), being
n the pitch, i the instrument, and T = [tON, tOFF] the temporal interval, we counted the
number of notes in the reconstruction that have the same pitch n, instrument i and whose
note-ON time falls within T . We then summed these counts over all notes in the test set. In
the absence of shattering, the total count equals the original number of notes. We found that
WAE-PR increased the number of notes by 19%, 12%, 38% on ASF-4, HP-10, and LPD-5,
respectively. By comparison, the increase factors were only 5%, 3%, and 10% for WAE-PRC .

Listening Experiments

To validate the CONLON approach, we conducted listening experiments with a group of 69
professional musicians. These experiments showed that they find pseudo-songs generated with
WAEs and PRC descriptions more usable than pseudo-songs generated with other state of the
art systems and PR descriptions (see Tab. 2), also they find pseudo-songs generated by WAEs
with PRC descriptions more usable than pseudo-songs generated by the same architecture with
PR descriptions (see Tab. 3), and find the development over time of pseudo-songs generated
with our system coherent rather than incoherent with respect to Harmony, Rhythm, Melody,
and Interplay of instruments (see Tab. 4).

Tab. 2: Mean ranks assigned by subjects to the usability of interpolations generated with our system (CONLON) and MuseGAN [5].

m = 75 pairs were ranked.

Tab. 3: Mean ranks assigned by subjects to the usability of pseudo-songs generated with PRC and PR. m = 78 pairs were ranked.

Tab. 4: Coherence of CONLON pseudo-songs as judged by subjects, with respect to harmony, rhythm, melody, interplay of

instruments. m = 69 judgements were collected.
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