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Summary

Cross-modal retrieval application with monophonic symbolic musical
themes as queries and audio database of polyphonic music

Learn enhanced chroma variant for musical themes

Only use weakly aligned training pairs

Adapt a deep salience model and train with the Connectionist
Temporal Classification (CTC) loss for computing chroma features

Improved state-of-the-art results for cross-modal retrieval application

. Cross-Modal Retrieval

= Query: Monophonic theme in symbolic encoding g Query: Musical theme h
= Database: Polyphonic audio recordings of Western classical music O 4.8 | S -
= Aim: Find relevant recordings where theme is played ¥ .
= Approach: Retrieval based on subsequence dynamic time warping o T

and chroma features [1] . Database: Audio recordings -
*  Problem: Monophonic—polyphonic difference between query and

database W

m

= Solution: Learn enhanced audio chroma features for musical themes ~— T

. Data: Weakly vs. Strongly Aligned

strongly aligned training pairs (chroma
labels are annotated for each spectral
frame)

= Dataset with more than 2000 musical themes # Mean Dur. Total Dur.
. ( 204 :00: 4:54:
= Based on dictionary by Barlow and Morgenstern from 1948 [2] D(Z:aelglae:e 1?12 8882(2)2 1019_528_5287
= Publicly available as Musical Theme Nk - e —
Dataset (MTD) [8] it i g:::-’_‘ » o =
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= Standard training procedure: Using PERE g EE A A= ‘| 3| 3| ‘I | T 3| 3| | f Fl =

= Creating strong alignments is very labor
intensive

= Qur aim: Using weakly aligned training

pairs (only the beginning and end of the 24 . . .
. 54 55 56 57
theme is annotated) Time (seconds)
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3. Approach: Connectionist Temporal Classification

= Adapt deep salience model [3] to have fewer 216
parameters and to output a chroma representation

216 %

= Training with Connectionist Temporal Classification
(CTC) loss [5] N

A
N N
8

6 | 32 32 32

= Input: HCQT tensor of theme recording
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= Qutput: probability distribution over s A [ : "
symbol alphabet of chroma labels and B " . 1
blank symbol ¢ (left matrix) f«oli 1 s | .
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= Given for training: Weakly aligned %D_ L B | ©D- -ll ._ \- 1
chroma label sequence c C ImN um
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= Training aim: Maximize output probability Time (seconds) Time (seconds)

for all possible alignments between input features and chroma label sequence

= After training: Remove blank symbol probabilities, normalize frames (right matrix)

4. Results

Qualitative comparison of standard chroma features Quantitative comparison against state-of-the-art
(left matrix) and CTC-based chroma features (right matrix)  baselines [7] using retrieval-based evaluation
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