Neural Loop Combiner: Neural Network Models For Assessing The Compatibility of Loops

Bo-Yu Chen¹, Jordan B. L. Smith², and Yi-Hsuan Yang¹ Academia Sinica, Taiwan 2 TikTok, London, UK

Demo Page: https://paulyuchen.com/Neural-Loop-Combiner-Demo/

Introduction

Assessing the Compatibility of Loops

- ► Help music producer to navigate the loops library efficiently by music loops compatibility estimation
- ► Most of previous works focus on rule-based compatibility estimation
- ► Neural Network can capture more complicated compatible relationship

Datasets

Free Music Archive (FMA) datasets [1] ► Genre: Hip-Hop only

Data type	# loops	# loop pairs	# songs
Training set	9,048	12,774	2,702
Validation set	2,355	3,195	7,06
Test set	200	100	100
\sum	11,603	16,069	3,508

Proposed System

Data Generation Pipeline

- ► Utilis the loop extraction algorithms [1, 2] to retrieve individual loops and loops used to combined before
- > Apply loop refinement procedure to get rid of duplicate loops (Fig. 1)

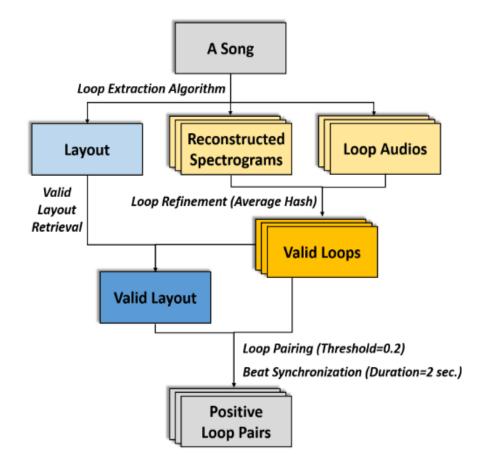


Fig. 1. The proposed data generation pipeline for positive loop pairs

Negative Sampling (Fig. 2)

- ► Within-song negative sampling: create negative loop pairs by shifting, rearranging, reversing one of the loops in a loops pair
- ► Between-song negative sampling: create negative loop pairs by choosing the loops from different songs

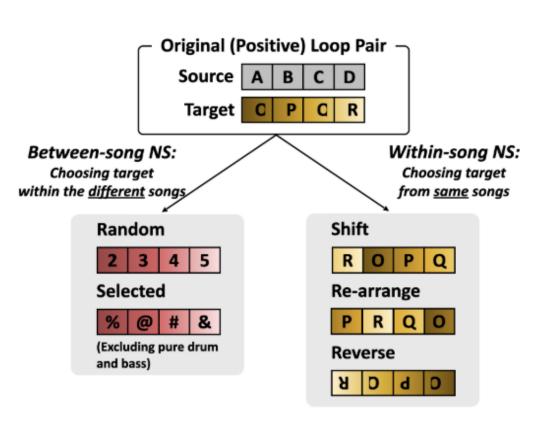


Fig. 2. Illustration of five loop-pair 'negative sampling' strategies

Table. 1 Statistics of the dataset

Models (Fig. 3)

- ► Train a CNN model to distinguish whether the loop combination is compatible
- ► Train a Siamese NN model to make the positive pair closer and push the negative pair far away in the embedding space

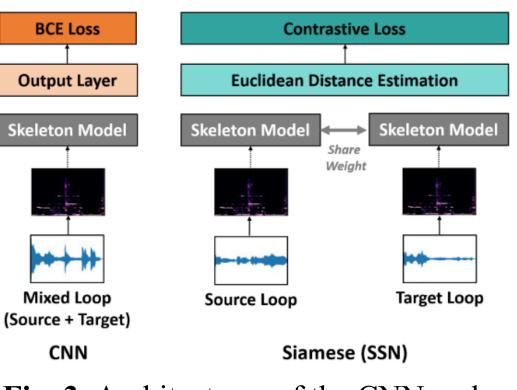


Fig. 3. Architectures of the CNN and SNN models

Results

Objective Evaluation (Table. 2)

- > CNN works better for the classification-based metrics and Siamese NN works better for the ranking-based metrics
- > CNN with reverse negative sampling performs the best in classification-based metrics
- ► Siamese NN with random sampling performs the best in ranking-based metrics

Model	Negative	Classification-based metric		Ranking-based metric			
	sampling	Accuracy	F1 score	Avg. rank	Top 10	Top 30	Top 50
CNN	Random	0.60	0.59	43.0	0.13	0.35	0.59
	Selected	0.59	0.59	43.1	0.13	0.29	0.62
	Reverse	0.63	0.62	41.2	0.19	0.42	0.62
	Shift	0.57	0.56	49.0	0.11	0.34	0.54
	Rearrange	0.57	0.57	47.7	0.10	0.31	0.57
Siamese NN	Random	0.51	0.47	34.2	0.27	0.52	0.74
	Selected	0.52	0.47	42.8	0.18	0.39	0.59
	Reverse	0.53	0.48	42.7	0.16	0.37	0.62
	Shift	0.53	0.52	43.0	0.16	0.41	0.65
	Rearrange	0.53	0.53	44.2	0.16	0.40	0.60

Table. 2 Objective results of different combinations of models

Conclusions and Future Work

- algorithms [2, 3]

Reference

- Processing., 2018.
- Language Processing, vol. 22, no. 12, p. 1726–17370, 2014.

Subjective Evaluation (Fig. 4)

- ► CNN with reverse negative sampling outperforms the than other models
- ► Both CNN and Siamese NN outperform AutoMashUpper [4], the rule-based baseline

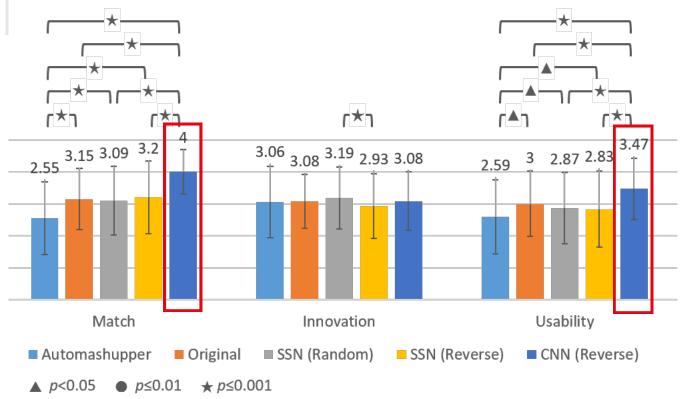


Fig. 4. The subjective evaluation results of comparing the preference among 5 models

> Subjective evaluation suggests that our proposed models outperform the rule-based system AutoMashUpper [4], we therefore conclude our proposed system is effective > We plan to investigate other objective metrics for performance evaluation and explore the relationship between loops and their arrangement by estimated layout from loop extraction

[1] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, "FMA: A dataset for music analysis," in Proc. Int. Soc. Music Information Retrieval Conf., 2017. [2] J. B. L. Smith and M. Goto, "Nonnegative tensor factorization for source separation of loops in audio," in Proc. IEEE Int. Conf. Acoustics, Speech and Signal

[3] J. B. L. Smith, Y. Kawasaki, and M. Goto, "Unmixer: An interface for extracting and remixing loops," in Proc. Int. Soc. Music Information Retrieval Conf., 2019. [4] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto, "AutoMashUpper: Automatic creation of multi-song music mashups," IEEE/ACM Trans. Audio, Speech, and