Deconstruct, Analyse, Reconstruct: How to Improve Tempo, Beat, and Downbeat Estimation

Sebastian Böck¹ and Matthew E. P. Davies²

¹enliteAI, Vienna, Austria ²University of Coimbra, CISUC, DEI, Portugal

Act I: Beat Tracking with TCNs

Introduce temporal convolutional networks for beat tracking

Act III: Deconstruct, Analyse, Reconstruct

Include downbeats as a new multitask learning target Update the convolution and max pooling layers Incorporate two dilation rates that are multiples of each other Incorporate data augmentation when training

Downbeat multitask learning target

Joint estimation: beats and downbeats Sequential estimation: beats then downbeats

DBN downbeats beats

Updated conv. & max pooling

Updated TCN

Introduce a "double dilation" rate to allow longer term temporal dependencies to be captured by the network

Data augmentation

To increase the network's exposure to a wider range of tempi, we generate multiple versions of the log magnitude spectrogram at different hop sizes and adjust the beat, downbeat, and tempo targets accordingly

Ablation Study

To demonstrate the benefit across each task of each introduced modification we present an ablation study

Main Results: Unseen Datasets

Tempo Estimation

	Accuracy 1	Accuracy 2			
ACM Mirum					
Gkiokas et al. [50]	0.725	0.979			
Percival and Tzanetakis [44]	0.733	0.972			
Schreiber and Müller [17]	0.781	0.976			
Böck et al. [20]	0.749	0.974			
Foroughmand & Peeters [18]	0.733	0.965			
Ours	0.841	0.990			
GiantSteps					
Gkiokas et al. [50]	0.721	0.922			
Percival and Tzanetakis [44]	0.506	0.956			
Schreiber and Müller [17] *	0.821	0.971			
Böck et al. [20]	0.764	0.958			
Foroughmand & Peeters [18] *	0.836	0.979			
Ours	0.870	0.965			
GTZAN					
Gkiokas et al. [50]	0.651	0.931			
Percival and Tzanetakis [44]	0.658	0.924			
Schreiber and Müller [17]	0.769	0.926			
Böck et al. [20]	0.673	0.938			
Foroughmand & Peeters [18]	0.697	0.891			
Ours	0.830	0.950			

Beat Tracking

	F-measure	CMLt	AMLt
	GTZAN		
Böck et al. [5]	0.864	0.768	0.927
Davies and Böck [22]	0.843	0.715	0.914
Ours (beat tracking)	0.883	0.808	0.930
Ours (joint tracking)	0.885	0.813	0.931

Downbeat Tracking

Ours (joint tracking)	0.672	0.640	0.832
Ours (sequential tracking)	0.654	0.619	0.817
Durand et al. [8]	0.607	0.480	0.774
Böck et al. [28]	0.640	0.577	0.824
GT_{z}	ZAN		
	F-measure	CMLt	AMLt
-	GT Böck et al. [28] Durand et al. [8] Ours (sequential tracking) Ours (joint tracking)	F-measure GTZAN Böck et al. [28] 0.640 Durand et al. [8] 0.607 Ours (sequential tracking) 0.654 Ours (joint tracking) 0.672	F-measure CMLt GTZAN 0.640 0.577 Durand et al. [8] 0.607 0.480 Ours (sequential tracking) 0.654 0.619 Ours (joint tracking) 0.672 0.640

Main Findings

We establish a new state of the art in all three tasks, with the most prominent gains coming in totally unseen test datasets.

We observe a promising "closing of the gap" between stricter and weaker evaluation methods indicating our approach is better able to reproduce the metrical level chosen by the annotator.

Funding Acknowledgements

This work is funded by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020 as well as by Portuguese National Funds through the FCT - Foundation for Science and Technology, I.P., under the project IF/01566/2015. Cofinanciado por:

