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Act III: Deconstruct, Analyse, Reconstruct
Include downbeats as a new multitask learning target 

Incorporate two dilation rates that are multiples of each other
Update the convolution and max pooling layers

Act I: Beat Tracking with TCNs

audio 
input

log magnitude

spectrogram

conv. layers &  
max pooling TCN DBN beats

Introduce temporal convolutional networks for beat tracking

Add a tempo classification layer to the output

audio 
input

log magnitude

spectrogram

conv. layers & 
max pooling tempo

beatsDBN

TCN

Act II: Multi-task learning

Data augmentation

audio 
input

log magnitude

spectrogram

data

augmentationtraining

To increase the network’s exposure to a wider range of tempi, 
we generate multiple versions of the log magnitude spectrogram 
at different hop sizes and adjust the beat, downbeat, and tempo 
targets accordingly 

original tempo

annotations 

after data

augmentation

after target

widening

Ablation Study
To demonstrate the benefit across each task of each 
introduced modification we present an ablation study
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Main Findings
We establish a new state of the art in all three tasks, with the 
most prominent gains coming in totally unseen test datasets. 

We observe a promising “closing of the gap” between stricter 
and weaker evaluation methods indicating our approach is 
better able to reproduce the metrical level chosen by the 
annotator. 
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to determine if the system is considering the correct met-
rical level in the case of beat tracking or the correct tempo
octave. Both CMLt and Accuracy 1 require the reported
beat locations and tempo to exactly match the annotations
(within the allowed tolerance). These metrics therefore
better catch the ability of an algorithm to correctly predict
the annotated information.

Concentrating on these metrics, it can be seen that addi-
tionally modelling and predicting downbeats has a positive
effect on beat tracking and tempo estimation. This effect
is then strengthened by the modifications made to the con-
volutional and TCN layers. Using data augmentation and
more filters gives a small additional boost. It should be
noted that the positive effect of data augmentation on the
generalisation capabilities of the network are mostly visi-
ble for the task of tempo estimation if “out of tempo distri-
bution” datasets are used for evaluation. Since the valida-
tion set is a randomly chosen subset of the training set (and
hence has a very similar tempo distribution), the impact is
not fully reflected in Figure 3.

3.2 Tempo estimation

Tempo estimation is the task with the most noticeable over-
all impact of the proposed refinements. While Accuracy 2
values have been quite high for many systems among all
datasets under consideration, the new system is the only
one consistently achieving high Accuracy 1 values as well
(Table 1). The system’s ability to model several tasks si-
multaneously and exploit mutual information relevant to
all tasks leads to an increased performance of more than
6% points in Accuracy 1 over the best results reported so
far on certain datasets.

Accuracy 1 Accuracy 2

ACM Mirum
Gkiokas et al. [50] 0.725 0.979
Percival and Tzanetakis [44] 0.733 0.972
Schreiber and Müller [17] 0.781 0.976
Böck et al. [20] 0.749 0.974
Foroughmand & Peeters [18] 0.733 0.965
Ours 0.841 0.990

GiantSteps
Gkiokas et al. [50] 0.721 0.922
Percival and Tzanetakis [44] 0.506 0.956
Schreiber and Müller [17] * 0.821 0.971
Böck et al. [20] 0.764 0.958
Foroughmand & Peeters [18] * 0.836 0.979
Ours 0.870 0.965

GTZAN
Gkiokas et al. [50] 0.651 0.931
Percival and Tzanetakis [44] 0.658 0.924
Schreiber and Müller [17] 0.769 0.926
Böck et al. [20] 0.673 0.938
Foroughmand & Peeters [18] 0.697 0.891
Ours 0.830 0.950

Table 1: Tempo estimation results on unseen test data. As-
terisks denote systems which have been trained on a dis-
joint set of the same source.

3.3 Beat tracking

Although beat tracking performance of existing systems is
already very high, the new system sets new high scores in
CMLt and even exceeds the very high performance values
above 0.9 (on Ballroom) by more than 4% points. Other
systems achieve such high scores only under the less strict
AMLt metric, which also permits metrical errors, including
double/half, triple/third tempo, and off-beat. This high-
lights the capability of the system to track beats exactly at
the annotated metrical level.

F-measure CMLt AMLt

Ballroom
Böck et al. [28] 0.938 0.892 0.953
Elowsson [51] ‡ 0.925 0.903 0.932
Davies and Böck [22] 0.933 0.881 0.929
Ours (beat tracking) 0.956 0.935 0.958
Ours (joint tracking) 0.962 0.947 0.961

Hainsworth
Böck et al. [5] 0.884 0.808 0.916
Elowsson [51] ‡ 0.742 0.676 0.792
Davies and Böck [22] 0.874 0.795 0.930
Ours (beat tracking) 0.904 0.851 0.937
Ours (joint tracking) 0.902 0.848 0.930

SMC
Böck et al. [5] 0.529 0.428 0.567
Elowsson [51] ‡ 0.375 0.225 0.332
Davies and Böck [22] 0.543 0.432 0.632
Ours (beat tracking) 0.552 0.465 0.643
Ours (joint tracking) 0.544 0.443 0.635

GTZAN
Böck et al. [5] 0.864 0.768 0.927
Davies and Böck [22] 0.843 0.715 0.914
Ours (beat tracking) 0.883 0.808 0.930
Ours (joint tracking) 0.885 0.813 0.931

Table 2: Beat tracking results on datasets used for training
with 8-fold cross validation (top), and on unseen test data
(bottom). ‡ was trained on Ballroom data only.

In Table 2 it can also be seen that joint modelling of
beats and downbeats (in the DBN) can be beneficial for
music with constant meter and steady tempo (e.g. Ball-
room), whereas it negatively impacts performance for ex-
pressive music as contained in Hainsworth and SMC.

3.4 Downbeat tracking

For the task of downbeat tracking the systems, perfor-
mance can be clearly separated into two main categories:
i) the systems of Durand et al. [8] and Fuentes et al. [9],
which explicitly model harmonic features (using chroma
features as input for the neural network) and ii) the ones of
Böck et al. [28] and ours which learn harmonic features im-
plicitly. Whereas the former show better performance on
pop music (e.g. the Beatles dataset) where downbeats often
coincide with harmonic changes, they perform less well on
data where bars are mostly defined based on rhythm.
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beat locations and tempo to exactly match the annotations
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tionally modelling and predicting downbeats has a positive
effect on beat tracking and tempo estimation. This effect
is then strengthened by the modifications made to the con-
volutional and TCN layers. Using data augmentation and
more filters gives a small additional boost. It should be
noted that the positive effect of data augmentation on the
generalisation capabilities of the network are mostly visi-
ble for the task of tempo estimation if “out of tempo distri-
bution” datasets are used for evaluation. Since the valida-
tion set is a randomly chosen subset of the training set (and
hence has a very similar tempo distribution), the impact is
not fully reflected in Figure 3.
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Table 2: Beat tracking results on datasets used for training
with 8-fold cross validation (top), and on unseen test data
(bottom). ‡ was trained on Ballroom data only.

In Table 2 it can also be seen that joint modelling of
beats and downbeats (in the DBN) can be beneficial for
music with constant meter and steady tempo (e.g. Ball-
room), whereas it negatively impacts performance for ex-
pressive music as contained in Hainsworth and SMC.

3.4 Downbeat tracking

For the task of downbeat tracking the systems, perfor-
mance can be clearly separated into two main categories:
i) the systems of Durand et al. [8] and Fuentes et al. [9],
which explicitly model harmonic features (using chroma
features as input for the neural network) and ii) the ones of
Böck et al. [28] and ours which learn harmonic features im-
plicitly. Whereas the former show better performance on
pop music (e.g. the Beatles dataset) where downbeats often
coincide with harmonic changes, they perform less well on
data where bars are mostly defined based on rhythm.

F-measure CMLt AMLt

Ballroom
Böck et al. [28] 0.863 0.834 0.931
Durand et al. [8] 0.797 0.616 0.916
Fuentes et al. [9] 0.83 - -
Ours (sequential tracking) 0.900 0.894 0.953
Ours (joint tracking) 0.916 0.913 0.960

Hainsworth
Böck et al. [28] 0.684 0.628 0.832
Durand et al. [8] 0.664 0.500 0.804
Fuentes et al. [9] 0.67 - -
Ours (sequential tracking) 0.713 0.686 0.855
Ours (joint tracking) 0.722 0.696 0.872

Beatles
Böck et al. [28] 0.831 0.730 0.858
Durand et al. [8] 0.847 0.722 0.875
Fuentes et al. [9] 0.86 - -
Ours (sequential tracking) 0.829 0.748 0.860
Ours (joint tracking) 0.837 0.742 0.862

GTZAN
Böck et al. [28] 0.640 0.577 0.824
Durand et al. [8] 0.607 0.480 0.774
Ours (sequential tracking) 0.654 0.619 0.817
Ours (joint tracking) 0.672 0.640 0.832

Table 3: Downbeat tracking results on datasets used for
training with 8-fold cross validation (top), and on unseen
test data (bottom).

Regarding the question of whether joint downbeat
tracking or sequential downbeat tracking is superior, Ta-
ble 3 shows a consistent advantage for processing beats
and downbeats simultaneously. The only exception is the
Beatles dataset, which contains some music with changing
metre. Due to memory constraints, joint downbeat track-
ing cannot model these metre changes. Modelling them
is computationally only feasible with sequential downbeat
tracking, which may further benefit from sub-beat mod-
elling, as used in [9].

4. DISCUSSION AND CONCLUSIONS

In this paper we address the multi-task estimation of three
inter-related properties of musical metre: tempo, beat, and
downbeat. Our approach is somewhat unconventional as
we do not propose a new method from scratch, but instead
we deconstruct, analyse, and then reconstruct an existing
approach as a means to further the state of the art. By
pairing our methodology with an ablation study, we are
able to directly observe the impact of the implemented
changes, and in turn, to observe the cumulative gains in
performance. Via our evaluation, it is clear that there is
no “magic bullet” among our proposed modifications, yet
their combination is clearly effective. Furthermore, we
must accept that when the baseline performance is already
high, the margin for improvement is somewhat limited.

By close inspection of the performance of our approach

in comparison both to the baseline and other existing sys-
tems, we consider the main impact of our approach as
constituting a “closing of the gap” between stricter and
more lenient evaluation metrics across each of the tasks.
For tempo estimation, our approach is the first to exceed
0.83 for Accuracy 1 across three large reference datasets,
which are completely unseen to our training scheme. Like-
wise, when considering the positive impact for beat track-
ing, we find the clearest improvements in the evaluation
metric which enforces tracking at the annotated metrical
level. Since the relative improvements under the more le-
nient metrics are much smaller, we do not believe that our
approach has unlocked the means to accurately infer the
tempo, beat, or downbeat in extremely challenging musical
examples. Reference to the incremental improvements for
the SMC dataset for beat tracking can immediately attest to
this. Indeed, the lack of improvement for this kind of musi-
cal material may require the reformulation of the inference
techniques used to recover the final outputs, rather than
intervention at the point of training the networks. Alterna-
tively, they may require a fundamentally different way in
which to present targets to the network which is better able
to model temporal uncertainty in the annotations. We con-
sider both of these to be promising areas for future work in
order to address more challenging data in a robust way.

Ultimately, we believe the main contribution of our
work rests in the increased reliability of the good predic-
tions made by the model across these three tasks. It is
well-established within music cognition that the percep-
tion of tempo, beat, and metre is ambiguous and varies
among listeners; therefore within the MIR community, it
is easy to justify the use of “multiple-choice” evaluation
methodologies. However, this evaluation practice explic-
itly masks the fact that for almost any piece of music, at
least some of these allowed options will be much less rea-
sonable than others. Thus, in the absence of a multi-level
annotation methodology in which the set of allowed an-
notations are specific to individual pieces of music, the
only way to guarantee a high-quality prediction (in an un-
supervised way) is to aim to maximise performance under
stricter evaluation metrics. The alternative is to perform a
subjective assessment of beat and downbeat performance
via listening to clicks mixed with the audio signals. Given
the large amount of musical material in existing datasets,
this remains a daunting prospect. However, by restricting
this kind of supervised analysis to the subset of excerpts
which are accurate only when allowing for alternative in-
terpretations of the annotations, we may move towards a
closer estimate of the true performance of these systems.
In addition, this kind of partial subjective evaluation could
act as a means to “bootstrap” the specification of alterna-
tive hypotheses on a per-excerpt basis.
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via listening to clicks mixed with the audio signals. Given
the large amount of musical material in existing datasets,
this remains a daunting prospect. However, by restricting
this kind of supervised analysis to the subset of excerpts
which are accurate only when allowing for alternative in-
terpretations of the annotations, we may move towards a
closer estimate of the true performance of these systems.
In addition, this kind of partial subjective evaluation could
act as a means to “bootstrap” the specification of alterna-
tive hypotheses on a per-excerpt basis.
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