Music FaderNets: Controllable Music Generation Based On High-Level Features

via Low-Level Feature Modelling

Hao Hao Tan. Dorien Herremans

Code : <u>https://github.com/music-fader-nets/</u> Demo : <u>https://music-fadernets.github.io/</u>

Dataset

- Piano e-Competition dataset (~100.000 4-bar sequences) for low-level features:
 - *Rhythm* sequence, e.g.: [onset, hold, hold, offset, onset, ...]
 - Note polyphony sequence, e.g. [3, 4, 3, 3, 3, 2, ...]
 - Rhythm density = #onsets / length
 - Note density = Σ polyphony / length
- VGMIDI dataset (~1.000 4-bar sequences) for high-level features (arousal values from -1 to 1) annotated by human
 - High arousal (c=1) if > 0.1
 - Low arousal (c=0) if < -0.1

Learnt High-Level Representation

* The relationship between low-level features and arousal are learnt with only 1% of arousal labels \rightarrow works even under weakly supervised conditions !

Arousal Style Transfer

TSNE shows clear

High arousal \rightarrow

Low arousal \rightarrow

separation of high &

low arousal mixtures

High rhythm density

Low rhythm density

High note density

Low note density

Construct a "style shifting vector" from mean point of one Gaussian mixture to another ($\mu_{high} \leftrightarrow \mu_{low}$)

- Style transfer process: $X \rightarrow (\text{encode}) \rightarrow z \rightarrow$ (apply shifting vector) \rightarrow
 - $\mathbf{z}' \rightarrow (\text{decode}) \rightarrow \mathbf{X}'$
- 82% of the subjective test responses agreed with arousal transfer direction.

→ X

Reconstruct the original token sequence from all latent vectors with an autoregressive decoder.