A NEURAL APPROACH FOR FULL-PAGE OPTICAL MUSIC RECOGNITION OF MENSURAL DOCUMENTS

Francisco J. Castellanos - Jorge Calvo-Zaragoza - Jose M. Inesta

Department of Software and Computing Systems, University of Alicante, Spain (fcastellanos@dlsi.ua.es)

1. INTRODUCTION

- Optical Music Recognition (OMR): process to digitally encode music notation from an image without human intervention.
- The countless number of music documents encourages the development of OMR to exploit this cultural heritage.
- Typical OMR researches focus on individual tasks, thus reporting partial results.
 - There is not knowledge about the interaction between the dif-

2. CURRENT STATE

- End-to-end approaches allows to process a staff-region image to retrieve its music-symbol sequence.
 - However, it is not able to tackle a whole music score image with multiple staves.
 - It requires a previous staff-region retrieval.
- *Selectional Auto-Encoders* (SAE) can be used to extract individual staves. It has successfully been applied in other similar OMR tasks

ferent OMR steps within the traditional workflow.

like layout analysis.

3. FRAMEWORK

*The staff-retrieval from \mathcal{B} is performed by a connected-component analysis.

4. Staff-retrieval

Example from SEILS with 80.5% of IoU. Ground truth: blue Predicted: yellow.

Average histogram of staves predicted and ordered by IoU. Only some *false positives* were yielded. No *false negatives*.

5. END-TO-END

Data			SEILC
Training staves	Test staves		JEIL5
Real scenario			
GT	Pred.	16.8 ± 3.7	5.2 ± 1.4
Pred.	Pred.	14.8 ± 3.6	4.4 ± 0.5
GT+Pred.	Pred.	11.5 ± 2.2	3.7 ± 0.8
Reference			
GT	GT	13.2 ± 1.1	4.4 ± 1.2
GT+Pred.	GT	10.8 ± 1.1	3.6 ± 0.9

*Results in terms of SER (%) with average \pm std. deviation format.

6. CONCLUSIONS

- The staff-retrieval precision is not the most important issue.
- The end-to-end model is better trained assuming a real staff retrieval.
- Combining predicted and ground-truth staves provides the best results.
- Our approach allows transcribing reliably the music content with minimum human effort.
- We plan to experiment with more complex manuscripts like polyphonic scores in Western modern notation.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministry HISPAMUS project TIN2017-86576-R, partially funded by the EU.

First author also acknowledges the support from "Programa I+D+i de la Generalitat Valenciana" through grant ACIF/2019/ 042.

Presented at the 21th International Society for Music Information Retrieval Conference, Montréal, Canada. 11-15 October 2020

^{*}SAE trained with images of 512×512 px.