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In this work, we address the relation between the emotions perceived in pop and
rock music and the language spoken by the listener. Two main research questions
are addressed:

e RQI1 - Do personal characteristics and mother tongue have an influence on the
annotation of perceived emotions for listeners?

e RQ2 - Can this information be used to improve MER algorithms?

Problem definition: inter-rater agreement

e Tagging a song is vague and ambivalent
o This also applies to auto-tagging, genre recognition, similarity, chord estimation, beat tracking (!)
e Perceived emotions vs. induced emotions

e Musical emotion complexity relates to personal- and cultural-specific associations
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Fig 1. Two-dimensional emotion space in music, adapted from [1]

Methodology (1): Survey of pop/rock emotion perception

e Selection from the 4Q Emotions dataset (22 songs).

e 11 emotions from the Geneva Emotion Music Scales (GEMS): Q1 (Joy, Power, Surprise), Q2 (Anger,
Tension, Fear), Q3 (Sadness, Bitterness), Q4 (Peace, Tenderness, Transcendence) [2]

e 4 languages: English Spanish German Mandarin

e Evaluate inter-rater agreement (Krippendorff’'s alpha [3]) with respect to listeners’ familiarity (F),
preference (P), lyrics comprehension (LC), and musical sophistication (MSI).
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Fig 2. Proposed methodology: keep input fixed while modifying the “ground truth”, adapted from [4]. We introduce filters
that select annotations from groups of raters to modify the “ground truth” to our models.

Methodology (2): Manifold learning

e Intuition: find annotations that are similar amongst them by using the proposed filter.

e Multi-dimensional Scaling (MDS), t-distributed Stochastic Neighbor Embedding (t-SNE), and Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP)
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Fig 3. MDS + Filter MSI Emotion + K-Means.

Methodology (3): Classification

e Intuition: given different filters to assemble group-based annotations, we can train models with different
“ground truths”

e Support Vector Machine: group-based and multi-label

e For example, excerpt O (originally labeled as anger is also labeled with bitterness, fear, power, and
tension when considering our annotations (top-right plot).
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Fig 4. Multi-label annotations ALL vs. Filt. ratings.

e Overall low agreement
e Ratings from different surveys have different distributions
e Group-based annotations with LC consistently improve classification

e Future work: test this methodology on benchmark datasets
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