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Music data

Most MIR problems are solved using supervised methods        labeled data. 

Music datasets have label errors: 

- Incorrect labels. 

- Imprecise event times. 

- Missing/extra events. 

Particularly problematic for datasets deriven from the Internet.

Bad annotations are problematic for training and evaluation.

What can we do about it? 

- Getting more human annotations: demanding and costly. 

- Automatically correcting the errors: difficult for complex tasks. 

- Find the errors in an automatic way.  

Data cleansing studies how to mitigate the effects of label noise.

Note annotations       errors in time and frequency.Case study
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We use contrastive learning to determinate if an (audio, annotation) pair are a good label or not, exploiting 
sequential dependencies between labels to predict incorrectly labeled time-frames trained using likely correct 

labels pairs as positive examples and and local deformations of correct pairs as negative examples

Our solution
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How to train this model if we do not know what annotations are good and what annotations are bad?     ?z
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We take our noisy 
data where we don’t 
know if the note 
annotations are good 
or bad and label it 
using a model that 
predict the pitch. This 
model is trained in 
another dataset.

The pitch labels are close to the notes annotation we have in the noise dataet. By comparing both, pitch estimations and note annotations, we can select 
the “likely correct” examples, where the prediction is similar to the label. We distort them to generate the incorrect examples, defining our training set.

We use this set for training the error detection model used to 
clean the noisy dataset.
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Results

(Top) The output of the error detection model for a short 
segment. (Bottom) the corresponding CQT and annotated 

notes (in white). The error is high at the beginning of the 
fourth note because it starts late, and at end of the last note 

because it is too long.

a. Directly: no “real” ground truth (only 
likely correct).  

b. Manually: costly and required expert 
knowledge.  

c. Data cleansing: identifying incorrect 
annotations and remove them during 
training. 

How to validate                            ?g(x, ̂y) → z
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 Bittner, R. et all. (2017)

1. All 

2. Filtered  

3. Weighted loss by

z ≤ 0.5
1 − z

Distribution of scores for the three training conditions. The curves are 
shifted to the right which means we have better results for the models 

trained after filtering the bad annotations with our error probability function.
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