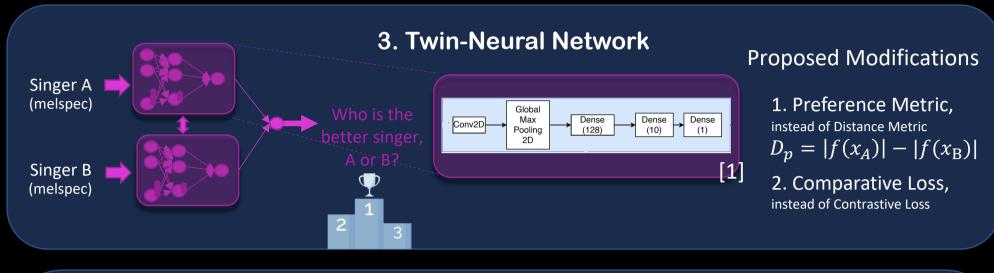
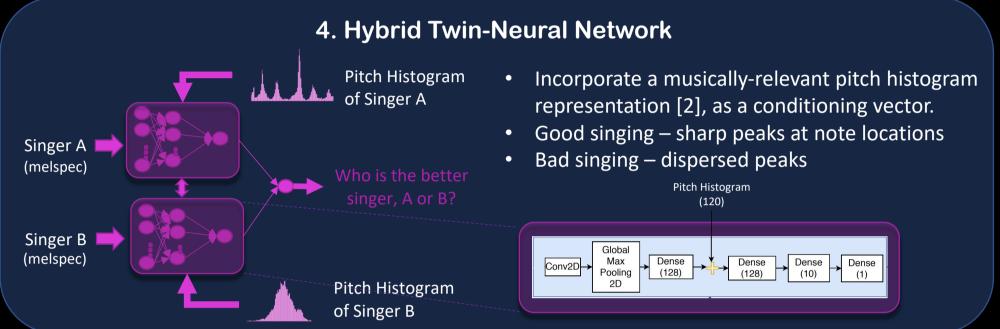


THE PARADOX OF CHOICH

Automatic Rank Ordering of Singing Vocals with Twin-Neural Network

Chitralekha Gupta, Lin Huang, Haizhou Li National University of Singapore


1. Introduction


- Singing is a desirable skill to develop
- Online platforms to showcase singing talent such as Smule Sing! and We Sing
- We explore automated methods of assessing the quality of singing
 - For singing talent search
 - For feedback to amateur singer

2. Inspiration

Humans are known to be better at choosing from a small number of options, rather than absolute ranking many options

We propose a preference-based framework to generate a rank-order of singing vocals

5. Dataset									
[3]	# singers	Pairs of vocals singing same song	Pairs of vocals singing same + different songs						
Train	320	25,280	102,080						
Validation	40	180	780						
Test_1 (seen songs)	- 1 40 1 180		780						
Test_2 (unseen songs)	10	90	190						

6. Some setup details

• Human score for a singer is *b*, then we label a pair of singers (A,B), as:

$$r = \begin{cases} 1, & if \ b_A \geq b_B \\ 0, & otherwise \end{cases}$$

 Rank-ordering is done according to the aggregate score of each singer through pairwise comparisons

7. Results

Spearman Rank Correlation between rank order from machine versus human

Gupta et al. [3]		This work		
Framework	Corr	Framework	Corr	
Relative Measures	0.64	Hybrid Twin-Net	0.68	
Absolute Measures	0.48	Absolute score prediction [1]	0.62	

	Test Data	Twin Network	Hybrid-Twin Network		Training pairs	Test Data	Hybrid-Twin Network
song pairs	Unseen singers, but seen songs	0.61	0.68		Only different song pairs for training	Unseen singers and songs	0.68
	Unseen singers and songs	0.41	0.65		Same + different song pairs for training	Unseen singers and songs	0.73

The inter-judge correlation amongst music experts is 0.82

8. Contributions

- Modified twin network for preference selection
- Hybrid pitch histogram + twin network
- Song and singer independent singing quality evaluation

9. References

[1] K A Dati C C and A Lord (Associated for dealers in formation in the second se

[1] K. A. Pati, S. Gururani, and A. Lerch, "Assessment of student music performances using deep neural networks," Applied Sciences, vol. 8, no. 4, p. 507, 2018.

[2] C. Gupta, H. Li, and Y. Wang, "Automatic evaluation of singing quality withouta reference," in Proceedings of APSIPA Annual Summit and Conference, 2018.

[3] C. Gupta, H. Li, and Y. Wang, "Automatic leaderboard: Evaluation of singing quality without a standard reference," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 13–26, 2020.