Unsupervised Disentanglement of Pitch and Timbre for Isolated Musical Instrument Sounds

Yin-Jyun Luo, Kin Wai Cheuk, Tomoyasu Nakano, Masataka Goto, Dorien Herremans

Summary

- Tackle unsupervised disentanglement of pitch and timbre
- Leverage pitch-shifting to further improve disentanglement
- Design a quantitative metric that accounts for disentanglement

Model

Idea: Introduce inductive biases through architectural constraints Generation

 Model a note of musical instruments x as being generated by

- a pitch (discrete c) and

- a timbre (continuous z)

latent variable

•
$$p_{\theta}(\mathbf{x}, \mathbf{z}, \mathbf{c}) = p_{\theta}(\mathbf{x} | \mathbf{z}, \mathbf{c})p(\mathbf{z})p(\mathbf{c})$$

- $p(\mathbf{c}) = \mathbf{U}(\mathbf{0}, \mathbf{1})$

$$-p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{1})$$

-
$$p_{\theta}(\mathbf{x} | \mathbf{z}, \mathbf{c}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}, \mathbf{c}), \mathbf{1}), \text{ decoder } (D)$$

Inference

- Follow the framework of variational inference, introducing a factorized approximated posterior to approximate the true posterior
- Approximated posterior $q_{\phi}(\mathbf{z}, \mathbf{c} | \mathbf{x}) = q_{\phi}(\mathbf{z} | \mathbf{x})q_{\phi}(\mathbf{c} | \mathbf{x})$
 - $q_{\phi}(\mathbf{c} \mid \mathbf{x}) = Cat(\mathbf{c} \mid \pi_{\phi}(\mathbf{x}))$, pitch encoder
 - $q_{\phi}(\mathbf{z} | \mathbf{x}) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), diag(\sigma_{\phi}^2(\mathbf{x}))), \text{ timbre encoder}$

Learning

- Reparameterization tricks allow for stochastic gradient descent
- Gaussian for **z** [*Kingma et al., ICLR 2014*]
- Hard Gumbel-softmax for **c** (one-hot vectors) [Jang et al., ICLR 2017]
- Maximize Evidence Lower BOund (ELBO)

$$\mathscr{L}_{ELBO} = \mathbb{E}_{q_{\phi}(\mathbf{z}, \mathbf{c} | \mathbf{x})}[\log p_{\theta}(\mathbf{x} | \mathbf{z}, \mathbf{c})] - D_{KL}(q_{\phi}(\mathbf{z}, \mathbf{c} | \mathbf{x}) || p_{\theta}(\mathbf{z}, \mathbf{c}))$$

Parameters

- Number of Mel-frequency bins F = 256
- Dimension of timbre latent variable L = 8
- Number of categories for pitch latent variable K = 82

Dataset

-Z_{swap}

- Studio-On-Line [*Ballet et al., JIM 1999*]
- 1,885 samples of 12 musical instruments and 82 pitches
- waveform $(22,050 \text{Hz}) \rightarrow \text{STFT} (w = 92 \text{ms}, h = 11 \text{ms}) \rightarrow \text{Mel-Spec}$ $(F = 256) \rightarrow \log$ -scaled \rightarrow normalized to $[-1,1] \rightarrow \mathbf{x}$ (200-th frame)

Quantitative Results

λ_1	λ_2	λ_3	λ_4		Pitch	Instrument	Combine	ACC	PM	FID _{recon}	FID _{rand}	CDS
				þ	8.81±3.47	$87.68 {\pm} 1.09$	$89.43 {\pm} 1.85$	$95.14 {\pm} 0.98$	$96.04{\pm}0.71$	21.80 ± 1.05	23.78 ± 1.47	24.33 ± 0.71
0	0	0	0	#	33.78±7.38	$80.90 {\pm} 4.41$	$73.55 {\pm} 5.77$	$72.65 {\pm} 4.82$	$74.46 {\pm} 4.06$	24.86 ± 2.27	$25.27 {\pm} 1.80$	8.49±1.96
				M0	16.38±7.65	$86.44 {\pm} 2.20$	$85.02{\pm}4.03$	$78.53 {\pm} 5.68$	80.22 ± 6.01	23.93 ± 1.97	$26.40{\pm}2.39$	11.45 ± 2.34
1	0	0	0	M1	17.85±4.52	87.34±1.26	84.74±2.53	$77.28 {\pm} 3.47$	$78.75 {\pm} 3.60$	18.86±1.77	$21.53{\pm}1.10$	9.15±1.28
0	1	0	0	M2	20.45 ± 7.98	$84.74 {\pm} 2.67$	$82.14{\pm}5.17$	$77.40{\pm}5.01$	$79.09{\pm}6.08$	26.00 ± 1.78	$26.90{\pm}2.28$	$9.20{\pm}1.55$
0	0	1	0	M3	$32.54{\pm}6.28$	$84.18 {\pm} 1.92$	$75.81{\pm}4.08$	80.45±1.58	82.71±1.26	18.68 ± 2.36	$20.82{\pm}1.67$	$10.79 {\pm} 2.37$
0	0	0	1	M4	17.06 ± 3.83	$84.18 {\pm} 1.38$	$83.55 {\pm} 1.84$	$74.35 {\pm} 2.75$	$75.59 {\pm} 3.32$	22.36 ± 2.36	$24.74{\pm}2.17$	$11.99{\pm}2.67$
1	1	1	0	M5	18.19±4.79	87.90±1.62	$84.85 {\pm} 2.48$	$78.19{\pm}2.35$	$79.66{\pm}2.81$	16.73 ± 2.13	$21.39{\pm}2.49$	$9.35{\pm}2.81$
1	1	1	1	M6	14.57±2.29	86.44±2.55	85.93±2.06	79.88±1.84	80.90±2.18	13.76±1.07	19.18±1.90	13.46±1.64

b: Supervised model trained with pitch labels #: Unsupervised model trained without pitch-shifting M0 - M6: Proposed unsupervised models with different losses activated

- Supervised model does not yield good generation quality (FID)
- Pitch-shifting alone improves disentanglement
- No auxiliary loss alone yields consistent improvement for all metrics
- Activating $\mathscr{L}_{surrogate}$ on top of the rest reaches the best-performing model (M5 \rightarrow M6)

Qualitative Results

- Perform pitch-conditioning spectrum generation
- Last row: seeds (three seeds per model) - First to third rows: three different k's
- Spectral distribution stays consistent per column
- Spectrums generated given a k are expected to have a consistent pitch (consistency)
- Different *k*'s render different pitches (diversity)

Future Works

- Perform pitch mapping without referring to pitch labels
- Trade off between capacity and constraint for pitch representation c
- Model larger time scale (temporal variable)

