

Semi-Supervised Learning Using Teacher-Student **Models for Vocal Melody Extraction**

Sangeun Kum¹, Jing-Hua Lin², Li Su², Juhan Nam¹

¹ Graduate School of Culture Technology, KAIST, South Korea ² Institute of Information Science, Academia Sinica, Taiwan

Summary

Problem

- Not enough labeled dataset.
- Pitch labeling is extremely laborious and costly

Contribution

- We present the <u>Semi-Supervised Learning (SSL)</u> methods for vocal melody extraction leveraging large-scale unlabeled music datasets.
- We compare three setups of <u>teacher-student models</u> along with various audio data augmentation techniques. We show the model with the consistency regularization is most effective.
- We investigate effective SSL strategies by exploring joint training, the size of unlabeled data, and the number of self-training iterations.

Teacher-Students Models

Self-training in the teacher-student framework :

Labeled	

Labels

< Supervised Loss>

Data

Cross-Entropy

Loss

To Final Loss

 ${}^{\bigstar}\mathcal{L}_D$

Unlabeled

< Unsupervised Loss>

Unlabeled

1. The **teacher** model is first trained with labeled data

Noisy Student

- The student model is trained with artificial 2. labels generated from the teacher model using unlabeled data.
- We repeat the same pseudo labeling and the 3. training with a new student model

 x_u

Fig1. Comparison with supervised-learning model and three student models on three test sets.

-> The student should produce consistent outputs that minimize the difference from the teacher even though the input is perturbed.

Data Selection

	Dataset	Number of Tracks	Total Length
Training (Labeled)	RWC	100	6h 47m
	MedleyDB	61	2h 39m
	iKala	262	2h 6m

81 \square IS+FMA_M IS+FMAs \square IS+FMA_L Supervised Only IS+FMA_{Sv} \square IS+FMA_{MV} In-house (IS) \square IS+FMA_{LV}

Unlabeled Minimize **Student Model** data difference $_{\neg} heta_s$ x_u Prediction Random $p(y|\tilde{x}_u;\theta_s)$ Inference ____ Noise $\mathcal{L}_C = \mathcal{L}_D + \frac{1}{M} \sum_{u=1}^M H(y_u, p(y|\tilde{x}_u; \theta_s))$

Pseudo Label

 y_u

Teacher Model

Inference

	In-house	535	6h 21m	
Training	FMA_small	3,521 / 8,000	25h / 60h	
(Unlabeled)	FMA_medium	10,639 / 25,000	89h / 208h	
	FMA_large	40,505 / 106,574	337h / 888h	
Test	ADC04	12	4m	
	MIREX05	9	4m	
	MadlavDD	10	12m	
	MedleyDB	12	45111	

Table1. Description of datasets. In FMA, the two numbers indicate tracks with vocal (the vocal ratio above 0.3). We use our own Singing Voice Detector to include only vocal songs.

Fig2. Comparison with Noisy Students on varied sizes of unlabeled datasets. The subscript 'v' denotes a selected subset of FMA whose vocal ratio exceeds a threshold.

→ Effective SSL requires a large amount of unlabeled data with a similar distribution for labeled data.

Fig3. Effect of iteration training for Noisy Students

 \rightarrow The performance continuously increases up to 2 iterations achieving the highest average OA

Comparison with State-of-the-Arts				ts	Conclusion
Methods	ADC04	MIREX05	MedleyDB	AST218	 This study provides a framework of semi-supervised learning using the teacher-student model for vocal melody extraction.
PatchCNN [1]	76.9 / 72.9	69.7 / 73.8	44.0 / 59.3	 42.3 / 59.7 38.9 / 68.3 41.5 / 68.1 55.8 / 75.4 The Noisy Student model is the most effective and robust to real-world music. Large-scale unlabeled data is effective when they are properly selected. Iterative training for the teacher-student model helps improve performance. The effectiveness of the proposed method by evaluating it on artificial large-scale test generated from automatically annotated multitrack data. 	- The Noisy Student model is the most effective and robust to real-world music.
DSM [2]	89.2 / 72.2	87.7 / 80.1	80.6 / 75.4		- Large-scale unlabeled data is effective when they are properly selected.
SegNet [3]	88.7 / 83.3	82.6 / 80.0	70.6 / 75.5		- The effectiveness of the proposed method by evaluating it on artificial large-scale test data
JDC [4]	90.6 / 83.5	91.4 / 87.4	72.7 / 78.1		generated from automatically annotated multitrack data.
Baseline	78.7 / 76.8	79.9 / 81.5	57.2 / 70.7	56.3 / 69.7	 Our method can be extended to other MIR tasks that suffer from the lack of labeled data such as automatic music transcription and chord recognition.
Proposed (NS)	90.4 / 82.2	90.4 / 85.9	76.3 / 79.2	2 54.2 / 74.2	

Table2. Vocal melody extraction results in terms of (RPA / OA) of the proposed and other methods on various test sets. (Baseline: supervised only)

[1] L. Su, "Vocal melody extraction using patch-based CNN," in Proc. ICASSP, 2018, pp. 371–375. [2] R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P. Bello, "Deep salience representations for f0 estimation in polyphonic music," in Proc. ISMIR, 2017. [3] T.-H. Hsieh, L. Su, and Y.-H. Yang, "A streamlined encoder/decoder architecture for melody extraction," in *Proc. ICASSP*. IEEE, 2019, pp. 156–160. [4] S. Kum and J. Nam, "Joint detection and classification of singing voice melody using convolutional recurrent neural networks," Applied Sciences, vol. 9, no. 7, p. 1324, 2019.