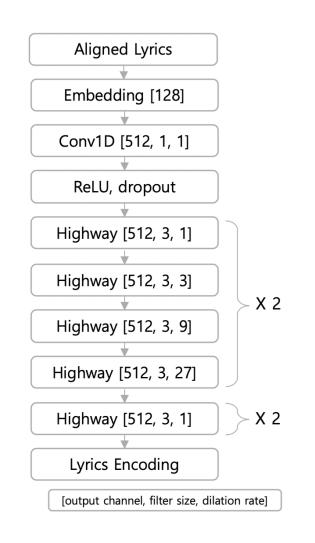


Exploring Aligned Lyrics-Informed Singing Voice Separation

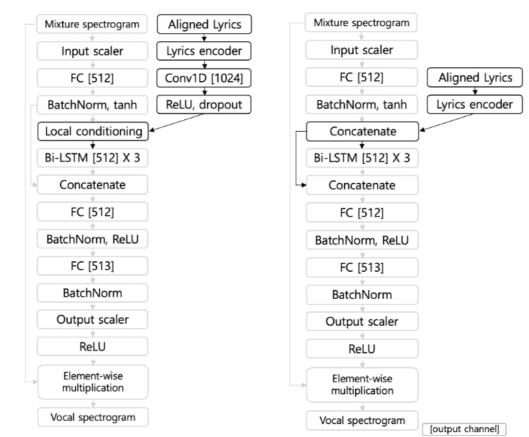
Chang-Bin Jeon, Hyeong-Seok Choi and Kyogu Lee Seoul National University, Music and Audio Research Group

contact : winyne@snu.ac.kr
paper : preprint

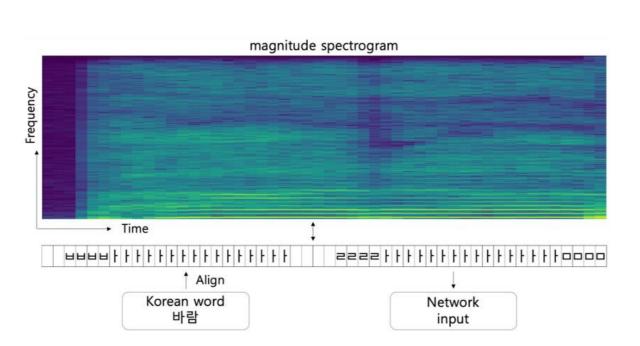

Motivation

- · Singing voice separation with additional information
 - Still, few deep learning-based methods.
- · In case of music signals, scores and lyrics can be used
- Lyrics are more easy to collect.
- Lyrics have rich information, such as formant frequencies.
- Let's use lyrics as additional information.
- We assumed that lyrics are pre-aligned.

Contribution


- · We proposed the singing voice separation network utilizing the additional aligned lyrics information.
- The highway network-based lyrics encoder + state-of-the-art *Open-unmix* separation network
- · We analyzed the cause of the performance improvement.
- Aligned lyrics have both vocal activity and phonetic information.
- We checked the performance gain is due to the phonetic information of aligned lyrics.

Model – Lyrics Encoder


- As a lyrics encoder, we used highway network-based model, which was also used in TTS and singing synthesis network.
- · Like voice synthesis model, we assumed that it would be also capable of modelling the phonetic information in singing voice separation task.

Model

- · Lyrics encoder + *Open-unmix*
- · We used two different conditioning methods for experiments
 - Local conditioning
 - Concatenation

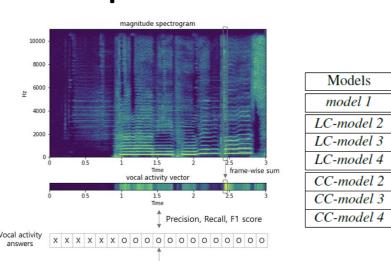
Dataset

- · 201 Korean songs dataset
- train -> 162 songs (9h)
- validation -> 19 songs (1h)
- test -> 20 songs (1h)
- · Manually annotated lyrics
- · Training with 19,113 instrumental tracks

Experiments

Model name	Inputs to the lyrics encoder
model 1	None
model 2	Meaningless inputs (all 0)
model 3	Vocal activity information
model 4	Aligned lyrics

- * LC Local conditioning
- * CC Concatenation


- · We trained total 7 models for the experiments.
- · model 1
- baseline Open-unmix
- model 2 -> {LC, CC}
- For checking the effect of increased network capacity
- model 3 -> {LC, CC}
- For checking the effect of vocal activity information
- model 4 -> {LC, CC}
- With aligned lyrics, our proposed model

Experiments – Performance Evaluation

Models	Median			Mean		
	SDR	SIR	SAR	SDR	SIR	SAR
model 1	9.956	18.674	9.847	8.595	16.062	9.145
LC-model 2	10.140	18.465	9.766	8.589	16.001	9.093
LC-model 3	10.090	18.713	9.763	9.250	16.298	9.153
LC-model 4	10.767	19.505	10.223	9.723	17.116	9.699
CC-model 2	10.110	18.434	9.909	8.691	16.164	9.207
CC-model 3	10.444	19.328	10.169	9.718	17.031	9.609
CC-model 4	10.757	19.623	10.371	9.752	17.250	9.803

- · Both *LC* and *CC* were effective
- Phonetic information is helpful for performance gain -> SDR 0.8dB↑

Experiments – Analysis of vocal activity usage

* VA – Vocal Activity

 Models
 Precision
 Recall
 F1 score

 model 1
 0.807
 0.853
 0.828

 LC-model 2
 0.810
 0.852
 0.830

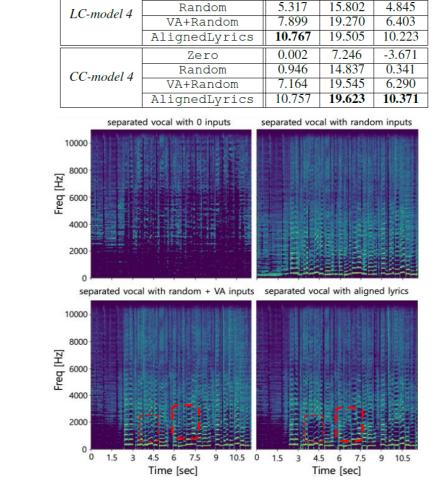
 LC-model 3
 0.887
 0.857
 0.872

 LC-model 4
 0.876
 0.854
 0.865

 CC-model 2
 0.814
 0.853
 0.833

 CC-model 3
 0.896
 0.855
 0.875

 CC-model 4
 0.879
 0.855
 0.867


infor

· Can the model leverage *VA* information

· Both VA and phonetic information are

- well?
- Yes. model 4 can reflect VA information as well as model 3.
- We extracted the VA from the separated vocal and compared it with ground truth VA.

Experiments – Analysis with using incorrect lyrics

- · To check if *model 4* effectively uses the information in lyrics, we gave the model incorrect lyrics
- · Four different lyrics inputs
- Zero : **0 value (means silence) in training**
- Random : random lyrics
- VA + Random : random lyrics with VA information
- AlignedLyrics : **Correct lyrics (proposed)**
- · Critical performance degradation occurred
- Dashed line shows the enhanced parts when the correct aligned lyrics are used

Conclusions

- · We proposed an integrated framework of combining the lyrics encoder into the *Open-unmix* separation network.
- By various experiments, we confirmed that the phonetic information of lyrics is helpful for the singing voice separation network.
- · We are planning to use the un-aligned lyrics for the future work.