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Overview A

e Singing voice conversion (SVC) is the transformation of a sung vocal performance from one vocalist’s
identity to another.

e It is a challenging problem because models need to be able to disentangle vocalist identity from acoustic
features, while preserving pitch and phonetic content in the output.

e Recently, speaker embedding networks were found to be successful for enabling zero-shot voice conversion
of speech |1|, whereby the system can model and adapt to new unseen voices on the fly.

e In this paper, we adapt zero-shot voice conversion methodologies for SVC using the WORLD |2| vocoder.
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e Speaker embedding network maps input log-Mel spectrograms into 256-dimensional embeddings using a
stack of LSTMs.
e This network is trained over large speech corpora to minimize the Generalized End-to-End Loss |3].

e Embeddings from vocal performances from the same performer form clusters in the embedding space.
e We can replace one-hot encodings of voices with speaker embeddings.

— During inference, new voices can be characterized by their speaker embeddings.
— So long as the model has been exposed to several voices during training, the model will be able to
adapt to a new voice by feeding the new speaker embedding as input to the model.

e We use the pretrained speaker embedding network found at https://github.com/CorentinJ /Real-Time-
Voice-Cloning.

Linguistic content and loudness
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Phoneme classification network

e As an alternative to an unsupervised latent representation, linguistic content and loudness can be
represented explicitly.
e Linguistic content modeled with phonetic posteriorgrams

— BLSTM classification network trained on a multi-speaker dataset (TIMIT [5]) operating on MFCCs.

— Phoneme classification accuracy does not need to be terribly accurate: 65% that we achieve is
sufficient to act as a reasonable speaker-independent representation.

— This model is frozen during training of the SVC network.

e Dynamics modeled using a deterministic A-weighted loudness computation [6].

e The speaker embedding network is frozen during training of the SVC network.

WORLD vocoder

e Estimates 3 sets of parameters for (speech) synthesis

— Fundamental frequency (fo)
— Periodic spectral envelope
— Aperiodic spectral envelope, defined as a ratio relative to the periodic spectral envelope

e Vocoder representation can be compressed using Mel Generalized Cepstral Coefficients [4]

e Advantages

— Boasts real-time synthesis
— Synthesized output guaranteed to match detected pitch

e Main disadvantage is lack of expressivity relative to a neural vocoder
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Neural network architectures
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Fixed encoder (FE) model

e Adapted AutoVC learns a speaker-invariant latent representation during SVC model training.

e F'E model encodes audio using loudness computation, WORLD-derived f;, and pretrained phoneme
classifier. Only the decoder is trained during SVC model training.

e Conversion models trained as conditional autoencoders to reconstruct periodic spectral envelopes.

e QOctave shifts computed automatically to accommodate register differences between source and target.

Universal Background Model (UBM) )

e The use of a pretrained speaker embedding network trained once in a supervised fashion allows for
unsupervised zero-shot SVC system training.

e This not only eases data engineering, but allows us to train an initial network on large amounts of speech,
and perform fine tuning using limited singing voice datasets.

e Network trained on large speech corpora acts as a “UBM" akin to those used in speaker recognition |7].

Experimental results o

e Models are trained using VCTK [8] and an internally sourced unlabeled singing voice dataset, which we
simply call the SVC dataset.

e To illustrate the effectiveness of our methods and insights, we consider 4 training configurations, trained
identically with ADAM optimizer, learning rate of 1073, and batch size of 2.

— VCTK using one-hot encoding of speakers (500K steps).

— VCTK using speaker embeddings (500K steps).

— SVC using speaker embeddings (500K steps).

— VCTK UBM (350K steps) and model fine tuning with SVC (150K steps) using speaker embeddings.

e We evaluate model performance quantitatively by reporting validation loss, and qualitatively with
subjective testing, reporting mean opinion scores (MOS).
e Overall, the best approach when evaluated on singing voice is the proposed UBM /SVC adaptation strategy.

Reconstruction loss on VCTK (left) and SVC (right) test sets

Training Configuration AutoVC FE Training Configuration AutoVC FE
VCTK (one-hot) 0.1837 | 0.1882 || VCTK (one-hot) N/A N/A
VCTK (zero-shot) 0.1634 | 0.1891 || VCTK (zero-shot) 0.3007 | 0.4314
SVC (zero-shot) 0.2930 | 0.3590 || SVC (zero-shot) 0.1650 | 0.1959
VCTK—SVC (zero-shot) | 0.2557 | 0.3232 || VCTK—SVC (zero-shot) | 0.1439 | 0.1850

MOS on singing voice with FE model, target voices from the VCTK (left) and SVC (right) test sets

Training Configuration Quality | Similarity || Training Configuration Quality | Similarity
VCTK (one-hot) 2.377 2.828 VCTK (one-hot) N/A N/A
VCTK (zero-shot) 2.447 3.051 VCTK (zero-shot) 2.154 2.610
SVC (zero-shot) 2.289 2.549 SVC (zero-shot) 2.477 2.772
VCTK—SVC (zero-shot) | 2.476 2.664 VCTK—SVC (zero-shot) | 2.674 2.937

Conclusions

e Speaker embedding networks can indeed be extended to enable zero-shot SVC.

e An advantage of our SVC system is that it can be trained on unlabeled data.

e This enables pretraining of a UBM on speech, followed by adaptation to singing voice, which yields
improved performance.

e Future work will consider end-to-end training using a differentiable parametric vocoder.
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Audio demo A

Please visit our audio demo at https://sites.google.com /izotope.com/ismir2020-audio-demo.




