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Overview

• Singing voice conversion (SVC) is the transformation of a sung vocal performance from one vocalist’s
identity to another.

• It is a challenging problem because models need to be able to disentangle vocalist identity from acoustic
features, while preserving pitch and phonetic content in the output.

• Recently, speaker embedding networks were found to be successful for enabling zero-shot voice conversion
of speech [1], whereby the system can model and adapt to new unseen voices on the fly.

• In this paper, we adapt zero-shot voice conversion methodologies for SVC using the WORLD [2] vocoder.

Speaker embedding network

Speaker embedding networks

• Converts variable length utterances into speaker embedding
• Training minimizes the Generalized End-to-End loss [1]

• Utterances of the same speaker cluster together
• Utterances of different speakers are pushed away from each other
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• Speaker embedding network maps input log-Mel spectrograms into 256-dimensional embeddings using a
stack of LSTMs.

• This network is trained over large speech corpora to minimize the Generalized End-to-End Loss [3].
• Embeddings from vocal performances from the same performer form clusters in the embedding space.
• We can replace one-hot encodings of voices with speaker embeddings.

– During inference, new voices can be characterized by their speaker embeddings.
– So long as the model has been exposed to several voices during training, the model will be able to

adapt to a new voice by feeding the new speaker embedding as input to the model.
• We use the pretrained speaker embedding network found at https://github.com/CorentinJ/Real-Time-

Voice-Cloning.
• The speaker embedding network is frozen during training of the SVC network.

WORLD vocoder

• Estimates 3 sets of parameters for (speech) synthesis
– Fundamental frequency (f0)
– Periodic spectral envelope
– Aperiodic spectral envelope, defined as a ratio relative to the periodic spectral envelope

• Vocoder representation can be compressed using Mel Generalized Cepstral Coefficients [4]
• Advantages

– Boasts real-time synthesis
– Synthesized output guaranteed to match detected pitch

• Main disadvantage is lack of expressivity relative to a neural vocoder

Fundamental Frequency Periodic Spectral Envelope Aperiodic Spectral Envelope

Linguistic content and loudness

Phoneme

• Linguistic content captured via phonetic posteriorgram
• Phoneme classifier trained on TIMIT [4]

• ~65% accuracy on test set
• Output is a 61-element vector at each time frame
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Phoneme classification network

• As an alternative to an unsupervised latent representation, linguistic content and loudness can be
represented explicitly.

• Linguistic content modeled with phonetic posteriorgrams
– BLSTM classification network trained on a multi-speaker dataset (TIMIT [5]) operating on MFCCs.
– Phoneme classification accuracy does not need to be terribly accurate: 65% that we achieve is

sufficient to act as a reasonable speaker-independent representation.
– This model is frozen during training of the SVC network.

• Dynamics modeled using a deterministic A-weighted loudness computation [6].

Neural network architectures
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Adapted AutoVC [1]
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Fixed encoder (FE) model

• Adapted AutoVC learns a speaker-invariant latent representation during SVC model training.
• FE model encodes audio using loudness computation, WORLD-derived f0, and pretrained phoneme

classifier. Only the decoder is trained during SVC model training.
• Conversion models trained as conditional autoencoders to reconstruct periodic spectral envelopes.
• Octave shifts computed automatically to accommodate register differences between source and target.

Universal Background Model (UBM)

• The use of a pretrained speaker embedding network trained once in a supervised fashion allows for
unsupervised zero-shot SVC system training.

• This not only eases data engineering, but allows us to train an initial network on large amounts of speech,
and perform fine tuning using limited singing voice datasets.

• Network trained on large speech corpora acts as a “UBM" akin to those used in speaker recognition [7].

Experimental results

• Models are trained using VCTK [8] and an internally sourced unlabeled singing voice dataset, which we
simply call the SVC dataset.

• To illustrate the effectiveness of our methods and insights, we consider 4 training configurations, trained
identically with ADAM optimizer, learning rate of 10�3, and batch size of 2.

– VCTK using one-hot encoding of speakers (500K steps).
– VCTK using speaker embeddings (500K steps).
– SVC using speaker embeddings (500K steps).
– VCTK UBM (350K steps) and model fine tuning with SVC (150K steps) using speaker embeddings.

• We evaluate model performance quantitatively by reporting validation loss, and qualitatively with
subjective testing, reporting mean opinion scores (MOS).

• Overall, the best approach when evaluated on singing voice is the proposed UBM/SVC adaptation strategy.

Reconstruction loss on VCTK (left) and SVC (right) test sets
Training Configuration AutoVC FE

VCTK (one-hot) 0.1837 0.1882
VCTK (zero-shot) 0.1634 0.1891
SVC (zero-shot) 0.2930 0.3590
VCTK!SVC (zero-shot) 0.2557 0.3232

Training Configuration AutoVC FE

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 0.3007 0.4314
SVC (zero-shot) 0.1650 0.1959
VCTK!SVC (zero-shot) 0.1439 0.1850

MOS on singing voice with FE model, target voices from the VCTK (left) and SVC (right) test sets
Training Configuration Quality Similarity

VCTK (one-hot) 2.377 2.828
VCTK (zero-shot) 2.447 3.051
SVC (zero-shot) 2.289 2.549
VCTK!SVC (zero-shot) 2.476 2.664

Training Configuration Quality Similarity

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 2.154 2.610
SVC (zero-shot) 2.477 2.772
VCTK!SVC (zero-shot) 2.674 2.937

Conclusions

• Speaker embedding networks can indeed be extended to enable zero-shot SVC.
• An advantage of our SVC system is that it can be trained on unlabeled data.
• This enables pretraining of a UBM on speech, followed by adaptation to singing voice, which yields

improved performance.
• Future work will consider end-to-end training using a differentiable parametric vocoder.
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Audio demo

Please visit our audio demo at https://sites.google.com/izotope.com/ismir2020-audio-demo.


