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1. Abstract

Local tempo estimation has never received as much attention in the music information retrieval (MIR) research
community as either beat tracking or global tempo estimation. One reason for this may be the lack of a generally
accepted definition. We discuss how to model and measure local tempo in a musically meaningful way using a
cross-version dataset of Frederic Chopin’s Mazurkas as a use case. |In particular, we explore how tempo stability
can be measured and taken into account during evaluation. Comparing existing and newly trained systems, we
find that CNN-based approaches can accurately measure local tempo even for expressive classical music, if
trained on the target genre. Furthermore, we show that different training—test splits have a considerable impact
on accuracy for difficult segments.

2. Modeling Local Tempo
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sac = select IBls, aggregate, and then convert the result to BPM

Example: Chopin’s Mazurka Opus 68 No 3, performed by Cohen, 1997. sca = select IBls, convert to BPM and then aggregate them

3. Tempo Stability

Local Tempo vs Stability
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4. Experiment

Dataset Systems DT-Maz Cross-Validation Splits
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5. Evaluation

Accuracy and Error Accuracy depending on Stability
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Beat

DT-Mazy, mmm DT-Mazy Non-event beats (black B), boundary beats (blue ®), ornamented beats (red ®), and weak bass beats (cyan ).
Light-blue highlights: high-error sections that cannot be explained by tempo instability.
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