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Abstract1. Abstract
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Abstract
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Local tempo estimation has never received as much attention in the music information retrieval (MIR) research
community as either beat tracking or global tempo estimation. One reason for this may be the lack of a generally
accepted definition. We discuss how to model and measure local tempo in a musically meaningful way using a
cross-version dataset of Frédéric Chopin’s Mazurkas as a use case. In particular, we explore how tempo stability
can be measured and taken into account during evaluation. Comparing existing and newly trained systems, we
find that CNN-based approaches can accurately measure local tempo even for expressive classical music, if
trained on the target genre. Furthermore, we show that different training–test splits have a considerable impact
on accuracy for difficult segments.

Effects of Different Selections Effects of Different Aggregations

sac = select IBIs, aggregate, and then convert the result to BPM
sca = select IBIs, convert to BPM and then aggregate them 

Local Tempo vs Stability
cvar = σ—μ

Tempo stability can be defined as the standard
deviation of normalized tempo values, which is
equivalent to the coefficient of variation of (sampled)
local tempo values, i.e., the ratio between the standard
deviation σ and mean μ.

Example: Chopin’s Mazurka Opus 68 No 3, performed by Cohen, 1997.
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ABSTRACT

Even though local tempo estimation promises musicolog-
ical insights into expressive musical performances, it has
never received as much attention in the music information
retrieval (MIR) research community as either beat track-
ing or global tempo estimation. One reason for this may
be the lack of a generally accepted definition. In this pa-
per, we discuss how to model and measure local tempo in
a musically meaningful way using a cross-version dataset
of Frédéric Chopin’s Mazurkas as a use case. In particu-
lar, we explore how tempo stability can be measured and
taken into account during evaluation. Comparing existing
and newly trained systems, we find that CNN-based ap-
proaches can accurately measure local tempo even for ex-
pressive classical music, if trained on the target genre. Fur-
thermore, we show that different training–test splits have a
considerable impact on accuracy for difficult segments.

1. INTRODUCTION

While global tempo is well defined for music with lit-
tle or no tempo variability [1], this is less so the case
for local tempo, especially for expressive classical music.
Composer markings like rubato (expressive, local tempo
change) or ritardando (slow down) indicate continuous or
even abrupt tempo changes, leading to one or more seg-
ments with stable tempi and segments of tempo instability
in between. Figure 1, for example, shows tempo mark-
ings for Frédéric Chopin’s Mazurka Op. 68, 3 (details are
discussed in Section 2). Naïvely, one may model local
tempo for such a piece as one of two extremes: at the micro

level, as an instantaneous value, e.g., as the Inter Beat In-
terval (IBI) between two consecutive beats, or at the macro

level, by averaging the number of beats over a longer pe-
riod of time. For expressive music, both approaches have
disadvantages. IBIs exhibit a large variance, and averag-
ing beat counts may underestimate the tempo, because ex-
pression leads more often to longer than shorter IBIs [2].
Repp therefore attempts to find a definition for the basic

tempo [3], i.e., the implied tempo the instantaneous tempo
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Work Measures Beats Recordings

Op. 17, 4 132 396 62
Op. 24, 2 120 360 64
Op. 30, 2 65 193 34
Op. 63, 3 77 229 88
Op. 68, 3 61 181 50

Table 1: Dataset overview [13]: Number of measures,
beats, recordings for five Chopin Mazurkas.

varies around. In [2], he suggests to derive the basic tempo
from the first quartile of eighth-note Inter Onset Intervals
(IOIs). Similarly, Dixon [4] proposes IOI clustering, using
centroids as tempo hypotheses. Grosche and Müller [5]
propose yet another approach by defining local tempo as
the mean of three consecutive IBIs, which is identical to
using Inter Measure Intervals (IMIs) for pieces in 3/4 time.
The same method is also used by Chew and Callender [6].
In summary, local tempo is usually modeled by aggregat-
ing local pulse information, but there appears to be no clear
consensus on how. Even though local tempo estimates are
popular intermediate features for beat trackers (e.g., [7,8]),
few works explicitly estimate and evaluate local tempo es-
timates. Peeters [9] simply measures whether 75% of the
estimated local tempi match the annotated global tempo.
In subsequent work [10], he compares the median of lo-
cal tempi with a global ground truth. A similar approach
is taken in [11]—after beat tracking, the median IBI is
used as global tempo and then evaluated. Similar to global
tempo evaluation, Grosche and Müller [5] compute the ac-
curacy of their IMIs allowing a 4% tolerance and certain
integer factors. Schreiber and Müller [12] only provide vi-
sualizations for local tempo estimates. To our knowledge,
there is no commonly accepted evaluation procedure. Even
less researched than local tempo is tempo stability, usually
only referred to as a precondition for global tempo esti-
mation [1]. Grosche et al. [13] mention that beat track-
ers tend to have problems with the first and last few beats
of Mazurkas due to boundary problems, and observe in-
creased error-levels caused by sudden tempo changes, but
as far as we know no measure for local tempo stability has
been proposed.

Modeling local tempo, determining its stability, and es-
timating it automatically from audio are problems at the
intersection of music information retrieval (MIR) and com-
putational musicology. We believe that all three prob-
lems have to be solved together in order to provide use-

Systems DT-Maz Cross-Validation Splits

Overview: Number of measures, beats, 
recordings for five Chopin Mazurkas [1].
See also http://www.mazurka.org.uk/

- Böck (BLSTM) [2]
- DeepTemp (CNN) [3]
- DT-MazM
- DT-MazV

DT-MazM and DT-MazV are
identical to DeepTemp, but have 
been trained on different cross-
validation splits [4].
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Figure 3: Dataset splitting into training, validation, and
test sets.

4.1 Setup

We trained DT-Maz from scratch 8 on Mazurka-5 record-
ings using 5-fold cross validation with two different kinds
of splits, M for Mazurka and V for version (or perfor-
mance). For M, each split contains all versions of one
Mazurka (Figure 3a). For V, each split consists of a disjoint
5th of all versions of each of the five Mazurkas (Figure 3b).
During training, three splits were used as training data and
one for validation. The remaining 5th split was used for
testing. Each split was used exactly once for validation
or testing. We refer to the models trained on M-splits as
DT-MazM and to the V-split models as DT-MazV. The em-
ployed training procedure was very similar to [12]. Audio
is first converted to mel-magnitude-spectrograms. Then
samples with the dimensions F⇥T are used as network in-
put. F = 40 being the number of frequency bins covering
the frequency range 20�5,000Hz, and T = 256 being the
number of time frames with a length of 46ms per frame,
corresponding to 11.9 s. We further use scale & crop data
augmentation [12] with time scale factors drawn from
N (1, 0.1), but limited to [0.7, 1.3] to avoid extreme dis-
tortions. After augmentation, samples are standardized to
zero mean and unit variance. Like [12], we use categorical
crossentropy as loss, because we cast tempo estimation as
a classification problem, predicting tempo as one of 256
linearly spaced classes ranging from 30 to 255 BPM. 9

Adam [23] is used as optimizer with a batch size of 32 and
an initial learning rate of 0.001. The rate is halved once the
validation loss stops improving and training is continued
with the best performing model up to that point (stepwise
annealing). We repeat this at most 10 times. If reduction
does not lead to a lower validation loss three times in a row,
training is stopped. To avoid overfitting to longer record-
ings, we ensure that samples from all training recordings
are presented with the same frequency.

4.2 Evaluation

To evaluate, we estimate the tempo for a sliding seg-
ment with length 11.9 s (256 frames) and a hop size of
186ms (4 frames) over all recordings. As metric we use
ACC1 (tempo accuracy) and ACC2 (accuracy allowing
so-called octave errors, i.e., estimates that are wrong by
the factor 2, 1/2, 3 or 1/3) from the global tempo estimation

8 Transfer learning on the DeepTemp model led to similar results.
9 For an eventual performance analysis, one may want to rescale esti-

mates logarithmically, as suggested in [6].

(a) Accuracy depending on tolerance

(b) Octave error density estimation

(c) Accuracy depending on work

(d) Accuracy depending on cvar

(e) Accuracies for cvar < 0.025

Figure 4: (a) Local ACC1 and ACC2 depending on accu-
racy tolerance. (b) Density estimation for OE. (c) Local
ACC1 and ACC2 for the five Mazurkas. (d) Local ACC1

and ACC2 considering cvar ranges. (e) Accuracies for seg-
ments with cvar < 0.025.

task [1], which are meant for music with low intra-track
tempo variability. This is reasonable, because we apply
the metric locally for each segment, so that the tolerance
does not have to correspond to intra-track, but to intra-
segment variability, and as we have shown in Section 3,
intra-segment variability is relatively low. Nevertheless,
we consider the typical 4% tolerance an arbitrary threshold
and therefore plot accuracy values for the tolerance interval

5. Evaluation

Accuracy and Error Accuracy depending on Stability

Opus 17 No 4: Averaged, beat-aligned Errors DT-MazM vs DT-MazV

Non-event beats (black ◼), boundary beats (blue ◼), ornamented beats (red ◼), and weak bass beats (cyan ◼). 
Light-blue highlights: high-error sections that cannot be explained by tempo instability.
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• Local tempo may be modelled using median aggregated IBIs.
• The local tempo cvar may be used as a measure for stability.
• Training on the target genre can lead to convincing results, 

even for expressive piano music.
• Care must be taken to avoid the “cover song” effect, i.e. 

overfitting to musical pieces (DT-MazV).
• Contrasting models trained on different splits may be used as 

a tool to identify difficult passages.
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Local Stability

[5]


