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AcousticBrainz
• Large-scale music audio descriptors, extracted on community-chosen repertoire 
• Multiple submissions per MusicBrainz Recording ID allowed 
• Well-known, well-documented open-source extractors/classifiers + extensive metadata 

• Does ‘in-the-wild’ descriptor behavior differ from performance in the lab? 
• Do descriptors describe what they are supposed to describe? 
• How can we know, if we don’t have ground truth?

Correlations between constructs 
Classifier, label A Classifier, label B Pearson’s r p

genre_rosamerica, cla genre_tzanetakis, cla .29 <.001
genre_dortmund, rock genre_rosamerica, roc .24 <.001
genre_dortmund, jazz genre_rosamerica, jaz .22 <.001
genre_dortmund, pop genre_rosamerica, pop .11 <.001
genre_dortmund, jazz genre_tzanetakis, jaz .08 <.001
genre_rosamerica, pop genre_tzanetakis, pop .06 <.001
genre_rosamerica, hip genre_tzanetakis, hip .05 <.001
genre_rosamerica, jaz genre_tzanetakis, jaz .02 <.001
genre_dortmund, blues genre_tzanetakis, blu .01 <.001
genre_dortmund, pop genre_tzanetakis, pop -.05 <.001
genre_dortmund, rock genre_tzanetakis, roc -.06 <.001
genre_rosamerica, roc genre_tzanetakis, roc -.07 <.001
mood_aggressive, aggressive mood_relaxed, not_relaxed .59 <.001
mood_acoustic, acoustic mood_electronic, not_electronic .58 <.001
danceability, danceable mood_party, party .53 <.001
mood_electronic, electronic genre_dortmund, electronic .48 <.001
danceability, danceable genre_rosamerica, dan .33 <.001
mood_happy, happy mood_party, party .20 <.001
mood_happy, happy mood_sad, not_sad .13 <.001

Table 1: Pearson correlations between high-level classifier outcomes, theorized to positively correlate with another.

where ni is the sample size of the ith population in our
enumeration.

As there are multiple possible labels within the same
classifier, but we want to discuss outcomes at the classifier
level, we then take the mean pooled variance, var(c), over
all possible labels l 2 Lc for classifier c.

When using variances, classifier confidences are con-
sidered to be informative. Alternatively, one could choose
to rather consider each classifier label as a binary label. To
reflect this perspective, for each population and for each
classifier, we can compute the normalized information en-
tropy Ĥ(MBIDi, c), which uses the Shannon entropy [27],
but normalizes by the amount of possible labels |Lc| for c:

Ĥ(MBIDi, c)

= �⌃l2Lc

P ((MBIDi, c, l)) log2 P ((MBIDi, c, l))

log2 |Lc|
= �⌃l2LcP ((MBIDi, c, l))log|Lc|P ((MBIDi, c, l))

(2)

where P ((MBIDi, c, l)) is the probability of label l in
classifier c, following the observed empirical distribution
within the population corresponding to MBIDi. Then, to
have a weighted measure per classifier over the whole fil-
tered corpus, we calculate the pooled normalized entropy
Ĥ(c), similarly to how we computed the pooled variance.

While we want for descriptor values to be stable within
a submission, it is usually not the intention that for a given
descriptor, the classifier would be so stable that it always
predicts a single l throughout the whole corpus. This e.g.
happens for the genre_dortmund classifier, which unright-
fully classifies many AcousticBrainz submissions as elec-
tronic music, as also noticed in [16]. To quantify the un-
biasedness of a classifier, we compute the normalized en-
tropy for each classifier over our complete (unfiltered) cor-
pus, denoted as Ĥ(c)all. A higher Ĥ(c)all denotes a more
uniform distribution over the different possible class labels
for c across the corpus, and thus lower classifier bias.

Plots in which we illustrate var(c) and Ĥ(c) (pooled

with regard to recordings with multiple submissions) vs.
Ĥ(c)all (taken across the whole, unfiltered corpus) are
shown in Figure 2. As we can see, indeed, the genre classi-
fiers turn out stable but highly biased. While in most cases,
observed trends are comparable for the two possible insta-
bility measures, some exceptions are found, most notably
on the gender classifier, which is considered stable when
using var(c), but unstable when using Ĥ(c). Seemingly,
confidences for this classifier are close to 0.5, meaning that
male/female classifications easily flip within a submission.

6. VALUE DISTRIBUTIONS

From Figure 1, it was observed that descriptor values
clustered together in small bands. This behavior oc-
curs for several genre and mood classifiers. To illustrate
this, Figure 3 displays a histogram of descriptor values
for the mood_acoustic, mood_relaxed, mood_electronic
and mood_sad classifiers, as observed across the com-
plete AcousticBrainz corpus. Some confidence values
seem disproportionally represented: in the histogram,
sharp spikes occur for mood_acoustic, mood_relaxed,
mood_electronic, and a minor spike for mood_sad.

There are various reasons why this may be the case.
Possibly, the community may have fed skewed data to the
classifier. Alternatively, the feature extractor may have
shown anomalous responses to specific inputs. For each
submission, we have rich metadata, which e.g. includes
information about audio codecs, bit rates, song lengths,
and software library versions that were used when the sub-
mission was created. While, in the absence of a con-
scious experimental design underlying the data, we can-
not cleanly test for contributions of individual facets, we
still can examine whether major distributional differences
occur for submissions with scores within the anomalous-
looking spikes, when comparing these to submissions with
scores outside of these.

For this, for each of the classifiers, we manually define
range intervals for the classifier confidences, within which

• Inspired by approaches to construct validity in 
Psychology 

• Redundancy in constructs (e.g., multiple genre 
classifiers with overlapping labels) 

• Theorized relations between constructs (e.g., 
happy opposite of sad (?))

Stability in resubmissions
• Inspired by derived oracles in Software 
Testing 

• For the same classifier c and same MBID 
m, one would expect 

classify_c(my_preprocessing(m))	
==	

classify_c(your_preprocessing(m))	

• Consider (in)stability within 
resubmissions and bias across corpus 
(pooled variance/entropy)

Strange distributions

rock: genre_tzanetakis vs. 
genre_rosamerica mood: not_sad vs. happy

• largest distances for codec, bit rate & software 
version of low-level feature extractors. 

• these aspects are normally overlooked!

Classifier Anomalous range Full Genre
#MBIDs #submissions #MBIDs #submissions

mood_acoustic, acoustic [0.09, 0.10] 282,605 358,747 60,261 94,268
mood_relaxed, relaxed [0.805, 0.815] 373,555 485,184 72,739 119,050
mood_electronic, electronic [0.972, 0.982] 315,626 401,151 64,944 101,915
mood_sad, sad [0.346, 0.362] 57,697 75,688 8,854 14,242

Table 2: Details of anomalous spike data slices used for distributional comparisons. For each classifier of interest, we
indicate the classifier confidence range for which a submission was considered to be anomalous. We also list the counts of
unique MBID recordings and overall submissions, both for the full corpus and our genre-filtered corpus.

acoustic relaxed electronic sad

bit_rate .42 .32 .39 .17
codec .34 .26 .32 .06
length .15 .15 .15 .32
lossless .28 .21 .27 .02
essentia_low .61 .52 .59 .15
essentia_git_sha_low .67 .58 .66 .23
essentia_build_sha_low .70 .62 .69 .24

Table 3: JS distances between frequency profiles over metadata categories, for anomalous vs. non-anomalous submissions
considering the four classifiers of interest. For metadata categories that are not listed, found JS distances were always 0.

acoustic relaxed electronic sad

Discogs .12 .09 .11 .11
last.fm .14 .12 .13 .14
tagtraum .14 .11 .13 .14

Table 4: JS distances between frequency profiles over
genre categories, for anomalous vs. non-anomalous sub-
missions considering the four classifiers of interest.

compression rates. In contrast, Table 4 shows that JS dis-
tances are equivalent and low across genre taxonomies and
types of anomalies: from this, it seems more likely that the
anomalies were caused by submission extraction contexts,
rather than the inclusion of anomalous data.

7. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed patterns in high-level descriptor
values in AcousticBrainz. As we showed, while the de-
scriptors were successfully validated under lab conditions,
they show unexpected behavior in the wild, raising ques-
tions on the extent to which they have construct validity.

The unexpected behavior could have two potential
causes. First of all, the construct underlying several
high-level descriptors may be conceptually problem-
atic by itself. For example, the concept of genre [32], as
well as its use in machine learning classification tasks [33]
has been criticized by musicologists and musicians. Fur-
thermore, within music psychology, there have been find-
ings that sad music does not necessarily elicit sad emo-
tions [34, 35]. Further interdisciplinary research will be
needed to better understand these phenomena.

Our current analyses also accumulated evidence that
the AcousticBrainz community confronted the descrip-
tors with audio and extraction contexts that were too
different from the contexts on which classifiers origi-
nally were trained. It should be noted that original train-

ing datasets for the classifiers were far smaller in size (sev-
eral hundreds to thousands of data points) than the current
scale of AcousticBrainz, and that this logically may not
have managed capturing all intricacies of larger-scale, eco-
logically valid data. However, our analyses suggest that
anomalous behavior may also be due to audio codecs, com-
pression rates and different versions of software implemen-
tations and builds that were used during extraction, which
are rarely explicitly considered and reported in evaluation
setups. As for the software versions, it should further be
noted that, while we focused on high-level descriptors, all
found differences occurred in the extraction procedures of
low-level descriptors (feature representations), while the
high-level machine learning models stayed constant. Thus,
low-level descriptor performance should explicitly stay in
scope when studying high-level descriptors.

With this work, we wished to shed light on current
challenges regarding the reproducibility and generalizabil-
ity of research outcomes, and on elements of processing
pipelines that are under-represented in applied machine
learning and signal processing literature, yet play a criti-
cal role for the pipeline’s performance [8, 36]. Inspired by
literature in both psychological and software testing, we
also offered several possible strategies to assess descriptor
validity, even in the absence of a clear ground truth.

While we exposed several potentially problematic pat-
terns, we explicitly do not wish for this work to be seen as a
criticism of AcousticBrainz and/or Essentia. No other MIR
resource or API currently offers similar levels of trans-
parency that allow for analyses like we performed here,
and we would like to explicitly thank the teams behind
these initiatives for their openness. It also is this openness
that will allow for us to perform further research in the near
future—with more systematic testing strategies and exper-
imental designs—towards more holistic quality assurance
procedures for applied machine learning procedures in the
context of humanly-interpretable signal data.

• Compare metadata  (through Jenson-Shannon 
distance) for anomalies vs. non-anomalies
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confidence distributions: acoustic, relaxed, electronic and sad moods

(in)stability vs. corpus-wide bias
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