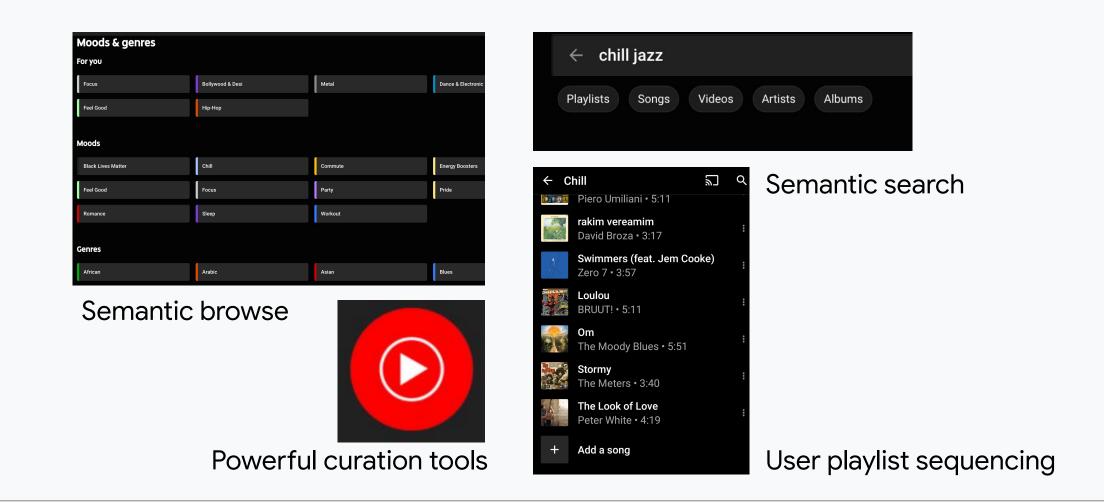
Semantically Meaningful Attributes from Co-Listen **Embeddings for Playlist Exploration and Expansion**

Introduction

- Deep Neural Nets can learn amazingly subtle similarities given enough training data. For example, representations of musical similarity given user co-listen behavior.
- The embedding representations generated by these networks are not immediately interpretable.
- There are practical applications in the music discovery space that require semantically meaningful annotations



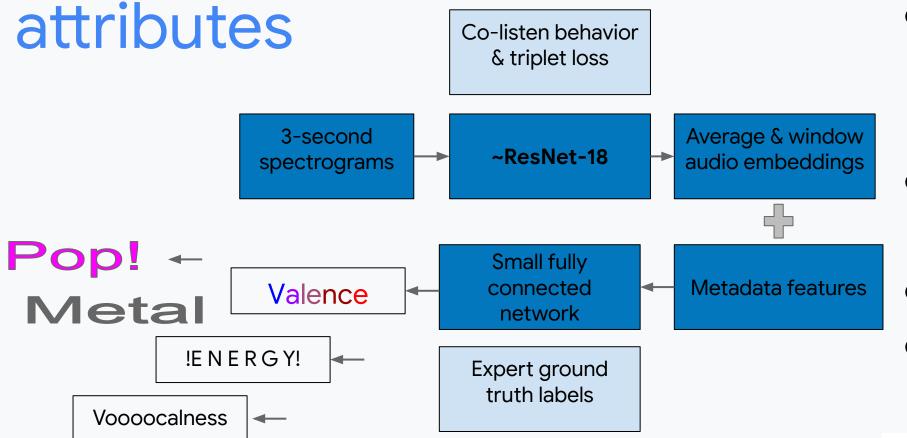
Attribute Embedding Generation

- Vector of the continuous logits of attribute models
- Renormalize using (regularized) square-root inverse of the pooled variance matrix
- Pooled variance matrix is estimated using a sampling of playlists treating each as a separate cluster sharing a single (pooled) variance matrix
- Post re-normalization, each playlist is a 0-mean, identity-variance distribution, allowing direct comparison between playlist distances

$$d_{i,k,j} = ||e_{i,k} - m_j||^2 \tag{3}$$

where $e_{i,k}$ is the embedding-space coordinates for the i^{th} entry in the k^{th} playlist and m_j is the mean of embeddingspace coordinates across all N_i entries in the i^{th} playlist: $m_j = \frac{1}{N_i} \sum_{i=0}^{N_j - 1} e_{i,j}.$

Co-Listen audio embeddings to semantic



- Shallow network on top of audio-embeddings (+ other features)
- Ground-truth data from music experts
- 1k samples per genre • ~10-20k samples for other models

Temporal Attribute-ness

- Inference on 10-second segments of audio using time-localized embeddings
- Model same as track-level
- This approach also yields temporal consistency attributes that are useful in and of themselves

Results **Playlist Separation**

- Compared how well human-curated playlists are separated in attribute (1) and audio (2) embedding spaces
- $\Delta_{i,k} = \min_{j \neq k} d_{i,k,j} d_{i,k,k}$: the smallest difference between each entry's distance to closest "other" mean and its own mean
- Playlists better separated in (1) than (2)

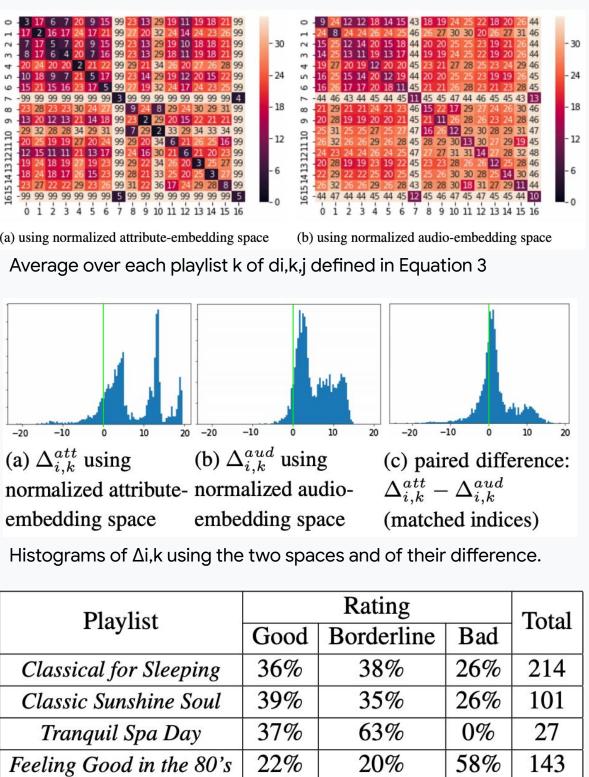
Playlist Expansion

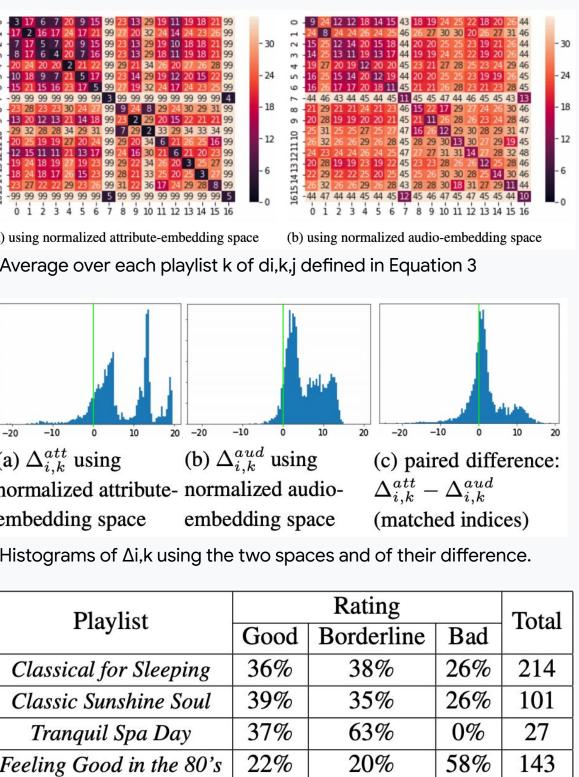
- Generate suggestions based on attribute embedding distance for playlist expansion
- Humans rated the suggestions as either acceptable or good for thematic playlists. Suggestions found not as effective for non-thematic playlists e.g., decade-based.

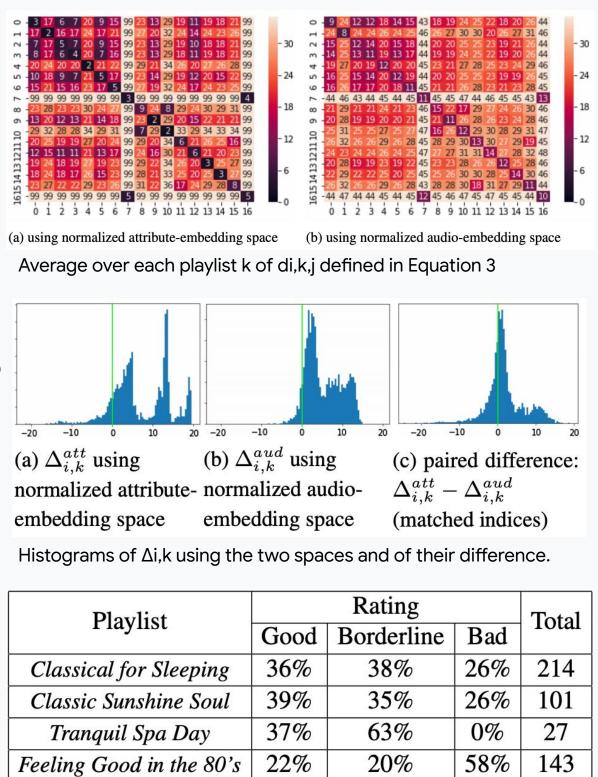
 $\mathbf{E} = \max_{0 \le i \le N - W} \frac{1}{W}$

cording to $W = \max\{3, \frac{N}{6}\}.$

Track level estimate from local estimates for Energy







11%

Playlist	
Classical for Sleeping	Ī
Classic Sunshine Soul	
Tranquil Spa Day	Ī
Feeling Good in the 80's	Γ
90's Rock Relaxation	Γ
Music curator ratings on sug	J

Ayush Patwari, Nicholas Kong, Jun Wang, Ullas Gargi {patwaria,kongn,juwanng,ullas}@google.com

Michele Covell, Aren Jansen Google {covell, arenjansen}@google.com

(1)

where N is the the number of 10-second segments in a track, e_j is the raw energy estimate for the j^{th} segment, and W is the window size which also a function of N ac-

Attribute quality

Attribute	Model type	Metric	Quality
Genres	Multi-label classifier • 16 classes	Human-expert labels	78% precision 84% recall
Valence	Regression ● Output ∈ [0. 1]	Prediction < 0.33 from human-expert labels on a 4-point scale	78% accuracy
Vocalness	Binary classifierHas vocals	Human-expert labels	97% precision 78% recall
Energy	Regression ● Output ∈ [0. 1]	Prediction < 0.25 from human-expert labels on a 3-point scale	90% accuracy

Aggregating temporal attributes improved energy accuracy from 85% to 90%.

Conclusions

- Temporal inference and temporal statistics on those time series perform better than inference on the temporally averaged embedding
- We demonstrate that the smaller embedding space induced by these semantic attributes separate thematic playlists better than the raw audio embedding as measured by interand intra-playlist distances
- Thematic playlists can also be described by recipes using a semantic attribute vocabulary and when these playlists were extended using those recipes, humans rated the suggestions as acceptable or good. Non thematic playlists such as decade-based did not.

gestions for playlist extension

24%

65% 85

