Deep embeddings with Essentia models

Pablo Alonso-Jiménez **Dmitry Bogdanov** Xavier Serra

Music Technology Group, Universitat Pompeu Fabra

Essentia is an open-source C++/Python library for audio signal processing, developed at the MTG-UPF and licensed under Affero GPLv3.

Functionalities

- Audio features
 - Spectral features
 - Rhythm and tempo
 - Tonality and melody
 - Fingerprinting
- Inference with TensorFlow models

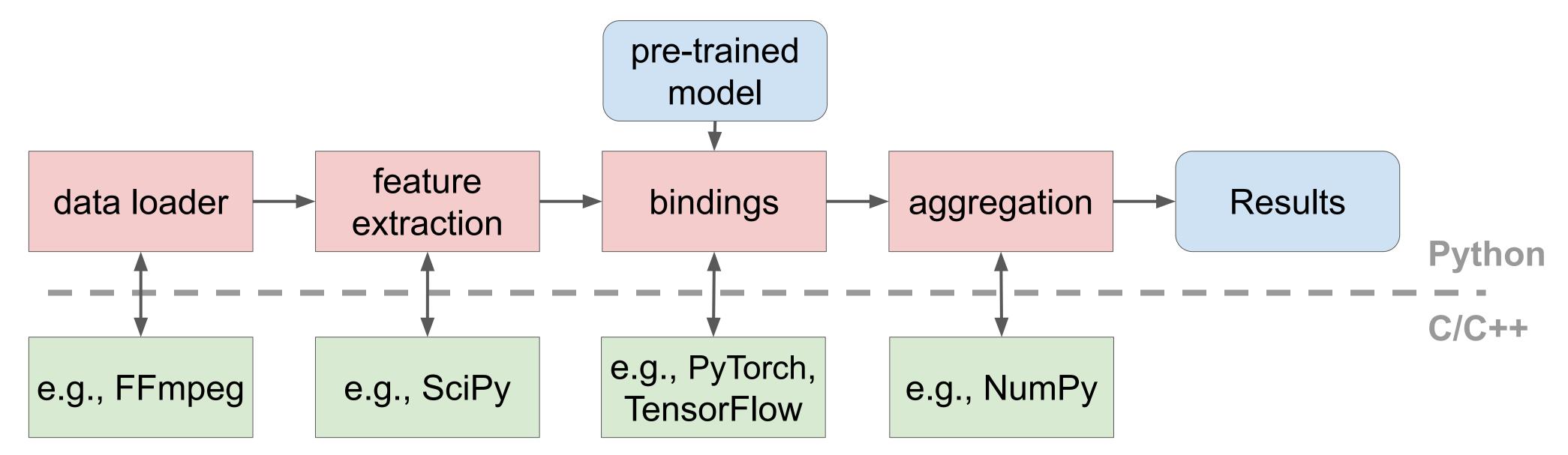
Design criteria

- C++ with Python bindings
- Large-scale deployment
- Real-time processing
- Cross-platform
 - (Linux, MacOS, Win, iOS, Android, JS)

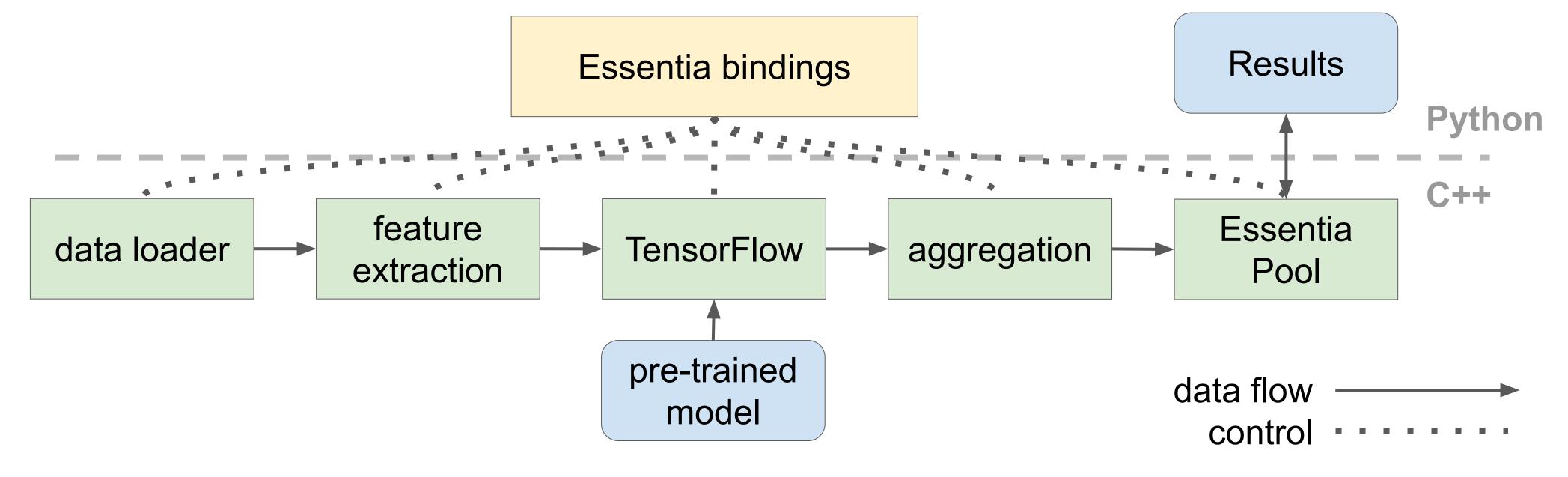
https://essentia.upf.edu/

TensorFlow integration in Essentia

Data processing pipeline found in **common MIR** projects:



Data processing pipeline in **Essentia**:



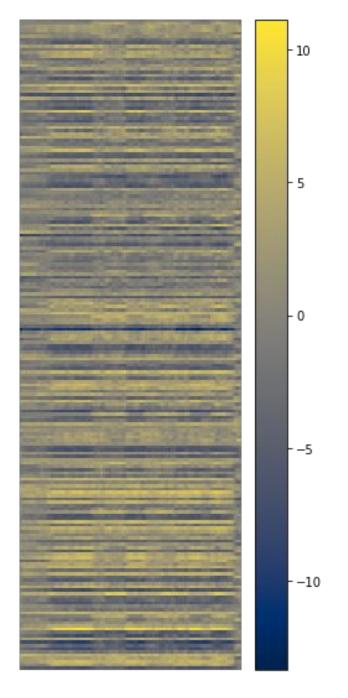
Suitable framework for **research** and **deployment** scenarios.

Pre-trained models

We have prepared various MIR models for several tasks. They can also be used as embeddings extractors. The following plots show the embeddings produced with our models for a 2 minutes rock track.

MusiCNN

music auto-tagging 787K parameters 200 embedding dimensions 220/350K training size fully supervised

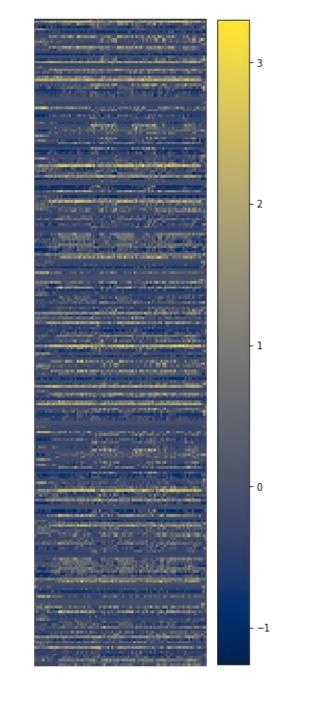


OpenL3

feature extractor 4.7M parameters 512 embedding dimensions 296K training size self supervised

VGG-I

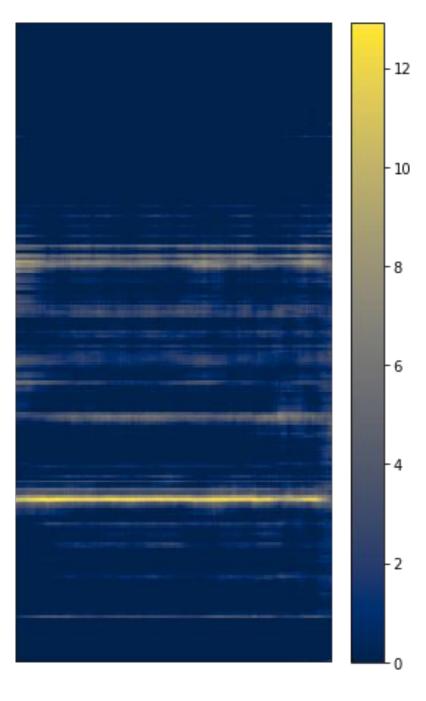
music auto-tagging 605K parameters 256 embedding dimensions 220/350K training size fully supervised



VGGish

Tempo-CNN

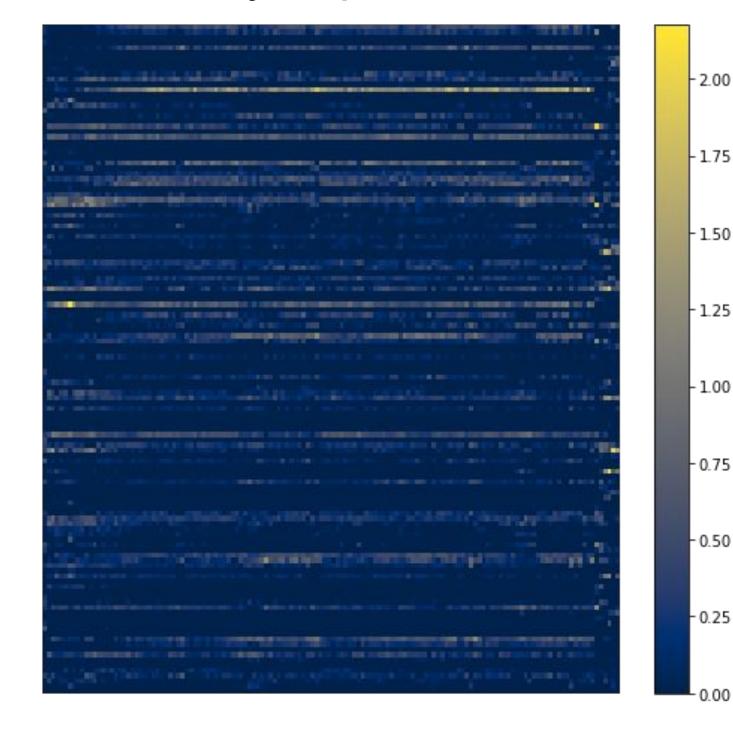
tempo estimation 1.2M parameters 256 embedding dimensions 11K training size fully supervised

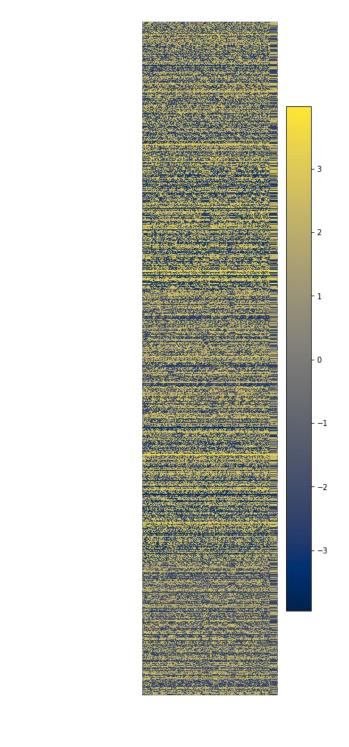


Spleeter

source separation 49M parameters 1280 embedding dimensions unknown training size fully supervised

feature extractor 62M parameters 128 embedding dimensions 70M training size fully supervised





MusiCNN and **VGG-I** are trained on two versions of **MSD-Last.fm** targeting the top 50 and the top 200 tags (T200 models), resulting in training sizes of 220K and 350K.

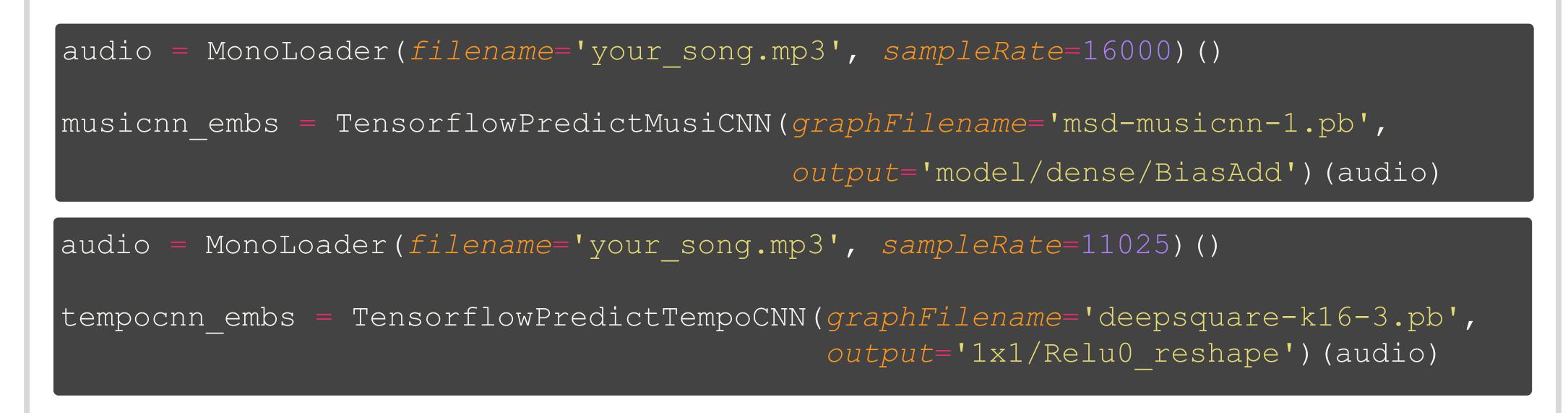
These models are available online at <u>https://essentia.upf.edu/models/</u>

Extractring embeddings

Essentia has dedicated algorithms to perform **inference** with each model.

With the `output` parameter we can select the layer of the network to retrieve. It is defaulted to the main task of the network (e.g., music tag indices, bpm bins, separated audio) but it can be set to point to any layer of interest.

On the **music auto-tagging** models we retrieved the penultimate layer as embeddings, on Tempo-CNN the logits of the last layer, on Spleeter we used the concatenation of the bottleneck layers of each stem as embeddings, and on the feature extractor models we used directly the output proposed by the authors.



More examples at: https://essentia.upf.edu/machine_learning.html

Downstream tasks We compared the capabilities of the pre-trained models as feature extractors in 16 downstream tasks. genre recognition dortmund gtzan rosamerica alternative, blues, electronic, folk-country, blues, classic, country, disco, hiphop, classic, dance, hip hop, jazz, pop, funksoulrnb, jazz, pop, raphiphop, rock jazz, metal, pop, reggae, rock rhythm and blues, rock, speech 400 full tracks 1820 excerpts 1000 excerpts mood detection relaxed acoustic aggressive electronic sad happy party relaxed, non-relaxed acoustic, non-acoustic aggressive, happy, non-happy party, non-party electronic, sad, non-sad non-aggressive non-electronic 321 full tracks 280 full tracks/excerpts 332 full tracks/excerpts 349 full excerpts 446 full tracks/excerpts 230 full tracks/excerpts 302 excerpts miscellaneous audio tasks voice/instrumental tonal/atonal fs-loop-ds urbansound8k danceability gender danceable, non-danceable bass, fx, melody, voice, instrumental female, male air conditioner, car horn, tonal, atonal children playing, dog bark, percussion, other drilling, engine idling, gunshot, jackhammer,

1000 excerpts

345 full tracks

The pre-trained models are compared by training a multilayer perceptron for each task on top of the proposed embeddings.

306 full tracks

2104 excerpts

3311 full tracks

The models are compared in two ways. Using 5-fold cross-validation (5F) and evaluating in the MTG-Jamanendo dataset (JA) for which we collected annotations following the taxonomies of all our tasks.

The table below also contains a column for the accuracy drop (AD), the difference between both metrics as a proxy for the generalization capabilities on each case.

The best embeddings for each task are shaded light/medium grey for each metric. The results are expressed in terms of **class-weighted accuracies**.

Task	MusiCNN			MusiCNN-T200			VGG-I			VGG-I-T200			VGGish			OpenL3			Spleeter			Tempo-CNN		
	5F	JD	AD	5F	JD	AD	5F	JD	AD	5F	JD	AD	5F	JD	AD	5F	JD	AD	5F	JD	AD	5F	JD	AD
dortmund	61	46	15	46	41	5	54	12	42	26	22	4	50	48	2	38	21	17	35	24	11	16	17	-1
gtzan	86	54	32	79	47	32	83	53	30	46	26	20	84	62	22	58	14	44	57	32	25	26	15	11
rosamerica	94	58	36	90	60	30	93	59	34	66	32	34	93	59	34	84	24	60	70	33	37	46	33	13
voice/instrum.	98	83	15	93	82	11	97	79	18	78	71	7	98	87	11	89	54	35	76	65	11	58	55	3
tonal/atonal	87	60	27	91	61	30	92	61	31	78	55	23	93	64	29	89	51	38	89	60	29	70	59	11
gender	87	82	5	79	76	3	84	80	4	70	65	5	83	79	4	55	53	2	55	62	-7	51	53	-2
danceability	98	66	32	94	70	24	94	68	26	71	62	9	94	70	24	90	58	32	90	62	28	66	59	7
acoustic	96	70	26	93	74	19	93	73	20	83	64	19	93	74	19	89	55	34	89	62	27	75	61	14
aggressive	97	72	25	97	76	21	99	67	32	82	70	12	99	67	32	91	52	39	93	58	35	69	59	10
electronic	93	78	15	88	77	11	88	76	12	74	70	4	94	81	13	77	57	20	77	63	14	64	55	9
happy	86	57	29	77	55	22	89	62	27	69	58	11	86	60	26	76	51	25	70	55	15	68	57	11
party	92	77	15	92	75	17	64	68	-4	84	73	11	90	75	15	77	57	20	87	66	21	73	63	10
relaxed	89	71	18	86	67	19	91	71	20	79	65	14	90	71	19	81	53	28	80	61	19	72	60	12
sad	87	67	20	88	65	23	86	68	18	83	62	21	89	65	24	85	55	30	83	60	23	84	62	22
fs-loop-ds	56	-	_	49	1	1	53	-	-	38	-	-	53	1	-	53	_	-	46	2	_	24	1	_
urbansound8k	81	-	-	40	1	-	82	-	-	35	-	-	89	-	-	77	-	-	70	2	-	10	2	2

- MusiCNN tends to be more successful in 5-fold cross-validation
- VGG-like models tend to suffer less accuracy drop (better generalization)
- In the MusiCNN model, more tags and data tend to be beneficial for generalization
- Models not trained for classification (*OpenL3, Spleeter, Tempo-CNN*) are not so powerful

Uses in MIR

Our main goal is to provide fast **C++ inference** for state-of-the-art deep learning models in **Essentia** suitable for **deployment** in diverse MIR applications.

We host a collection of models for specific use-cases (auto-tagging, tempo estimation, source separation, music classification by genre, mood, and instrumentation).

Some of these models produce **embeddings** suitable for **transfer learning**.

Universitat MTG Pompeu Fabra Barcelona Group

Music Technology

siren, street music

8732 excerpts