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ABSTRACT

We benchmark several convolution kernels, in particular
custom dilated convolutions. We test whether convolutions
inspired by known pitch spaces like the Tonnetz may help
to achieve better results on the task of key detection.

1. INTRODUCTION

Many studies on music analysis and generation use Con-
volutional Neural Networks (CNNs) [1], which have ob-
tained amazing results in image analysis. A key advantage
of CNNs is their inherent capacity to detect the same fea-
ture in different locations as convolution kernels process
neighboring pixels in the same way across all the image.

Music, too, can be regarded as bidimensional: Scores
are usually symbolically encoded using a horizontal time
axis and a vertical pitch axis (cf. pianoroll notation). Most
music features are invariant if considered at different bars
(time invariance) or transposed to different keys (pitch in-
variance). Therefore, one can easily see the appeal of using
CNNs to analyse music.

However, time and pitch dimensions have their own
unique properties which differ from the spatial dimensions
of an image. In this short paper we focus on the pitch do-
main, trying to define what metric space would best high-
light the properties of music and, therefore, simplify the
task of a machine learning model.

A first approach is to consider as neighboring pitches
those associated with neighboring keys on the piano (semi-
tone distance). However, this is not convenient in the ma-
jority of cases. Take harmonic analysis, for example. It is
generally accepted that the sequence of the harmonics is a
better approximation to the theoretical proximity of pitches
than the semitone distance, meaning that C is closer to G
than to C]. This suggests the use of other representations
such as the circle of fifths or, more generally, Tonnetz [2].

The correct pitch metric and space could be learned by
deep models in the presence of a sufficiently large amount
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of data [3], but making them first-order citizens of music
learning could improve the way the network learns music.
To our knowledge, as of today there is no systematic study
on the effect of the choice of different pitch representation
for convolutional layers. We propose here the first steps
towards such a study, especially focusing on dilated con-
volutions. Our goal is not to improve the state of the art, but
only to explore whether new convolution types inspired by
expert knowledge in music theory can improve the results
on a given musical task.

2. MODEL

As a musical task we choose key detection, which is rel-
atively simple to define (given a music score, identify the
local key at regular time intervals) but constitutes an impor-
tant first step for more complicated tasks in music analysis
and generation.

2.1 Architecture

The proof-of-concept model we use is made of 3 convolu-
tional layers, each followed by a batch normalization, then,
after the last normalization, a bidirectional GRU and a fully
connected layer (Figure 1). Intuitively, the convolutional
layers function as feature detectors, the recurrent layers
study the progression of chords, and the fully-connected
layer adapts the size of the analysis to the size of the de-
sired outputs.
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Figure 1. Model for benchmarking convolution layers.

On the time axis, everything is quantised to the eighth
note and we perform standard convolutions with kernel
size 9 and no dilation. This means that every note is pro-
vided a context of 4 eighth notes before and 4 after. The
pitch input of the model is encoded with 12 pitch classes.
The output, instead, has dimension 24 (12 pitch classes,
major or minor).



2.2 Pitch Space Analysis

We tested several models for the structure of the pitch
space. These models are implemented in practice by differ-
ent kernels on the pitch space in the convolutional layers.

Baseline. A convolution with kernel size 1 ignores all
interactions between notes, effectively considering them
all at infinite distance.

Semitone distance. Each note is coupled to the ones
immediately next to it. Within a kernel of size 3, C is cou-
pled with B, C, and C].

Circle of fifths. A coupling following the circle of fifths
gives a dilation on the pitch axis of 7 (for usual spaces with
12 pitches) or 23 (for Base 40 pitches [6]). C is connected
to F, C, and G.

Tonnetz. An arbitrary graph of relationships is drawn,
notated with a set of integers (Figure 2). For example, the
graph {0, 3, 4} means that we connect C with C, D]/E[,
and E, i.e., with its minor and major third.
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Figure 2. Graphical representation of a Tonnetz. A kernel
{0, 3, 4} corresponds to a self-connection plus the SW- and
NW-bound arrows.

The Tonnetz generalizes the other cases: On spaces
with 12 pitches, the baseline can be represented as {0},
the semitone distance as {−1, 0, 1} = {0, 1, 11}, and the
circle of fifths as {−7, 0, 7} = {0, 5, 7}.

2.3 Corpus and implementation

The corpus is made of 201 MusicXML scores gathered
in [4] from baroque, classical and romantic repertoire
(mainly Bach, Mozart, Beethoven), with Roman Numeral
annotations for each beat. The corpus was sliced into
5808 frames, each of length 200 eighth notes. The dataset
was randomly cut into a training (40%), a validation
(30%), and a test set (30%). In a second experiment, each
subpart in the training set was transposed twelve times to
balance the keys.

Music parsing was done through music21 [5] and the
network was implemented with PyTorch v1.2.0 1 . Custom
dilated convolution were implemented through masking of
the kernels.

1 www.pytorch.org

without transposition of the training set
Kernel Accuracy Kernel Accuracy
{0, 6}12 45.3% {0, 4, 8}8 42.3%
{0, 8}12 46.4% {0, 3, 10}8 43.9%

... ...
{0, 10}12 50.7% {0, 8, 11}8 53.1%
{0, 7}12 51.0% {0, 5, 7}8 54.0%

with transposition of the training set
Kernel Accuracy Kernel Accuracy
{0, 4}12 68.1% {0, 2, 7}8 66.4%
{0, 8}12 68.3% {0, 2, 4}8 67.0%

... ...
{0, 10}12 70.4% {0, 3, 10}8 71.3%
{0, 3}12 71.0% {0, 5, 8}8 71.8%

Table 1. Accuracy in ascending order on the test dataset
for the task of key detection on 2-note kernels (left) and 3-
note kernels (right). The baseline is {0}24 : 51.1% without
transposition, 68.3% with. In the third convolutional layer,
all kernels have 24× 9 weights.

3. RESULTS

Since they can learn transposition-independant features in
a compact way, convolutions are a good candidate as a
constituent part of models for musical tasks. The first re-
sults show that the choice of convolution kernel influences
the training and that promising results are achieved with
dilated convolutions that follow usual music theory pitch
spaces such as Tonnetz.

For example, Table 1 shows that, in the two-note ker-
nels, kernels {0, 10} (C-B[, minor seventh), {0, 3} (C-E[,
minor third), and {0, 7} (C-G, fifth) provide the best re-
sults. Of course, fifths are essential elements of a key, but
they are also ubiquitous. Therefore, we expected intervals
such as minor sevenths or even the tritone (C-F]) to give
more information on the local key.

Another consideration to make is that each convolu-
tional layer after the first increases the complexity of the
interacting music entities. For example, using 2-note ker-
nels the second layer connects intervals, while with 3-note
kernels it connects triads. Having such higher-order fea-
tures is necessary for the study of functional harmony –
but the task of key detection is probably too simple to ob-
serve any such effect.

These results should be further studied to understand
some symmetry-breaking we observe – kernels {0, 2} and
{0, 10} should give similar results, provided that bound-
ing conditions are properly implemented, but they don’t.
Perspectives also include testing with more data, includ-
ing more key-balanced data, tests on Base 40 pitches [6],
benchmarking more kernel combinations, more options on
the rhythm domain, as well as well as on other toy tasks.
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