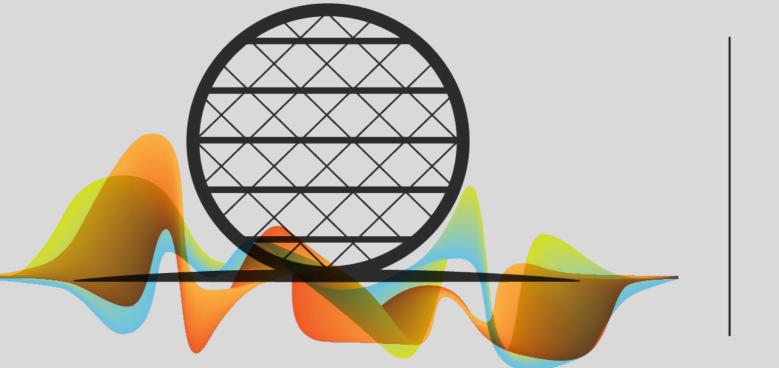
Cross-Dataset Music Emotion Recognition: an End-to-End Approach



ISNALR MTL2020

Ana Gabriela Pandrea, Juan S. Gómez Cañón, Perfecto Herrera

In this work, we address music emotion recognition with a context-based end-to-end model. Two main research questions are addressed:

- Are there differences/correlations between the emotions perceived in music by listeners raised with different mother tongues?
- Can an end-to-end model trained on raw waveforms, that was efficient for speech tasks, be employed for language-oriented MER?

Our hypothesis is that perceived emotion depends on cultural characteristics and models should be trained in the target test language in order to obtain sensitive results. The end-to-end architecture should outperform state-of-the-art models since it allows for more information to be processed.

Problem definition: music emotion recognition

Results: Baseline, SincNet, Cross-Dataset

- Valence-Arousal plane 4 quadrants classification [1]
- **Raw waveform** vs. handcrafted features
- End-to-end deep learning: **SincNet** [2]
- Musical emotion complexity relates to **cultural-specific associations**

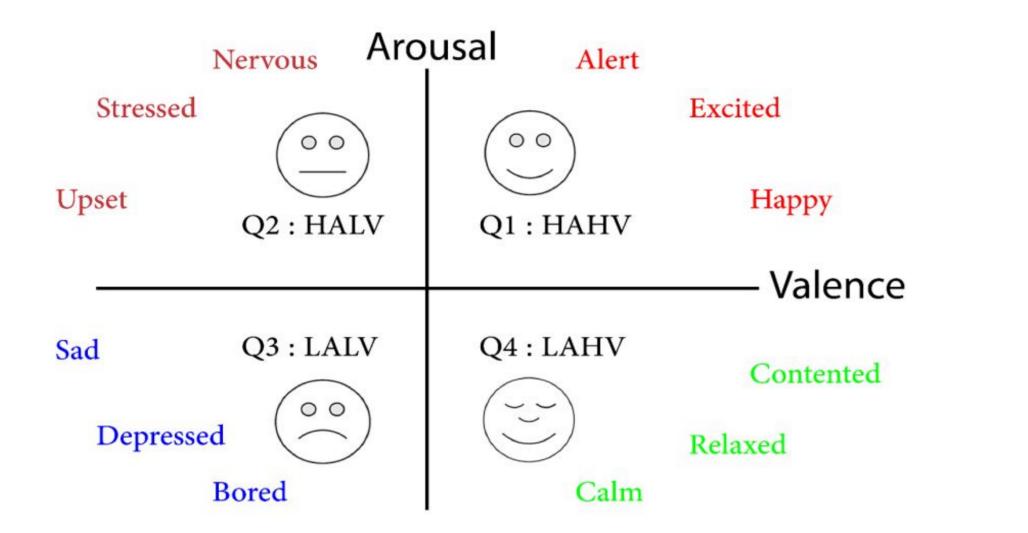


Fig 1. Valence-Arousal plane, taken from [3]. L is low, H is high, A is arousal, V is valence.

Methodology: data & models

• 3 languages: English [4], Mandarin [5], Turkish [6]

- Baseline model: MLP, best from default traditional ML in Scikit-Learn [9]
- Baseline features: **IS13 ComParE**, with 65 low-level descriptors, statistics
- Best features were found to be more similar for English and Turkish
- Combined with Essentia => better scores for English, Turkish
- SincNet: 200ms frame size, 128 batch size, 100 epochs
- **Bigger frame size to better detect emotion**: 500ms frame size, 32 batch size, 100 epochs => better f-score and accuracy for English, Turkish
- Cross-dataset: train & test with different sets => general poor results
- Transfer learning 1* & 2*: tune SincNet with the 3 sets in specific orders: CH-TR-EN & TR-CH-EN for English, EN-TR-CH & TR-EN-CH for Mandarin, EN-CH-TR & CH-EN-TR for Turkish
- Transfer learning 3*: train with EN / TR & test with TR / EN => scores don't necessarily increase, thus CH also contributes to transfer learning
- Mixed dataset: train on combined datasets & test separately => within-dataset is better, thus mixing brings noise

Dataset		English (4Q-EMOTION)				Mandarin (CH-818)				Turkish (TR-MUSIC)			
Set-up	Model	Р	R	F	Α	Р	R	F	Α	P	R	F	Α
Within dataset	MLP Essentia	58	56	55	56	26	24	<u>23</u>	24	71	70	70	70
Within dataset	MLP IS13 ComParE	65	63	63	63	23	<u>30</u>	<u>23</u>	<u>30</u>	74	71	71	71
Within dataset	MLP combined	<u>72</u>	<u>67</u>	<u>64</u>	<u>67</u>	18	19	18	19	<u>80</u>	77	77	77
Within dataset	SincNet 200ms	59	57	52	57	11	27	16	27	68	63	58	63
Within dataset	SincNet 500ms	58	58	56	58	3	18	6	18	68	66	66	66
Transfer learning 1*	SincNet 200ms	57	56	51	56	10	24	12	24	75	75	75	75
Transfer learning 2*	SincNet 200ms	61	60	57	61	<u>28</u>	26	17	26	72	71	71	71
Transfer learning 3*	SincNet 200ms	59	58	56	58	-	-	11-2	-	73	73	73	73
Mixed dataset	MLP IS13 ComParE	60	57	56	57	22	23	22	23	67	64	64	64
Mixed dataset	SincNet 200ms	58	57	56	57	26	23	21	23	61	51	50	51

- Baseline feature sets: Essentia [7] & IS13 ComParE [8]
- Baseline Multi-Layer Perceptron (MLP) vs. End-to-end SincNet
- SincNet: CNN with **sinc filters** in the feature extractor
- Set-ups: Within-dataset, Cross-dataset, Mixed training, Transfer Learning
- Evaluation based on: weighted averages of precision (P), recall (R), f-score (F), accuracy (A) and confusion matrices

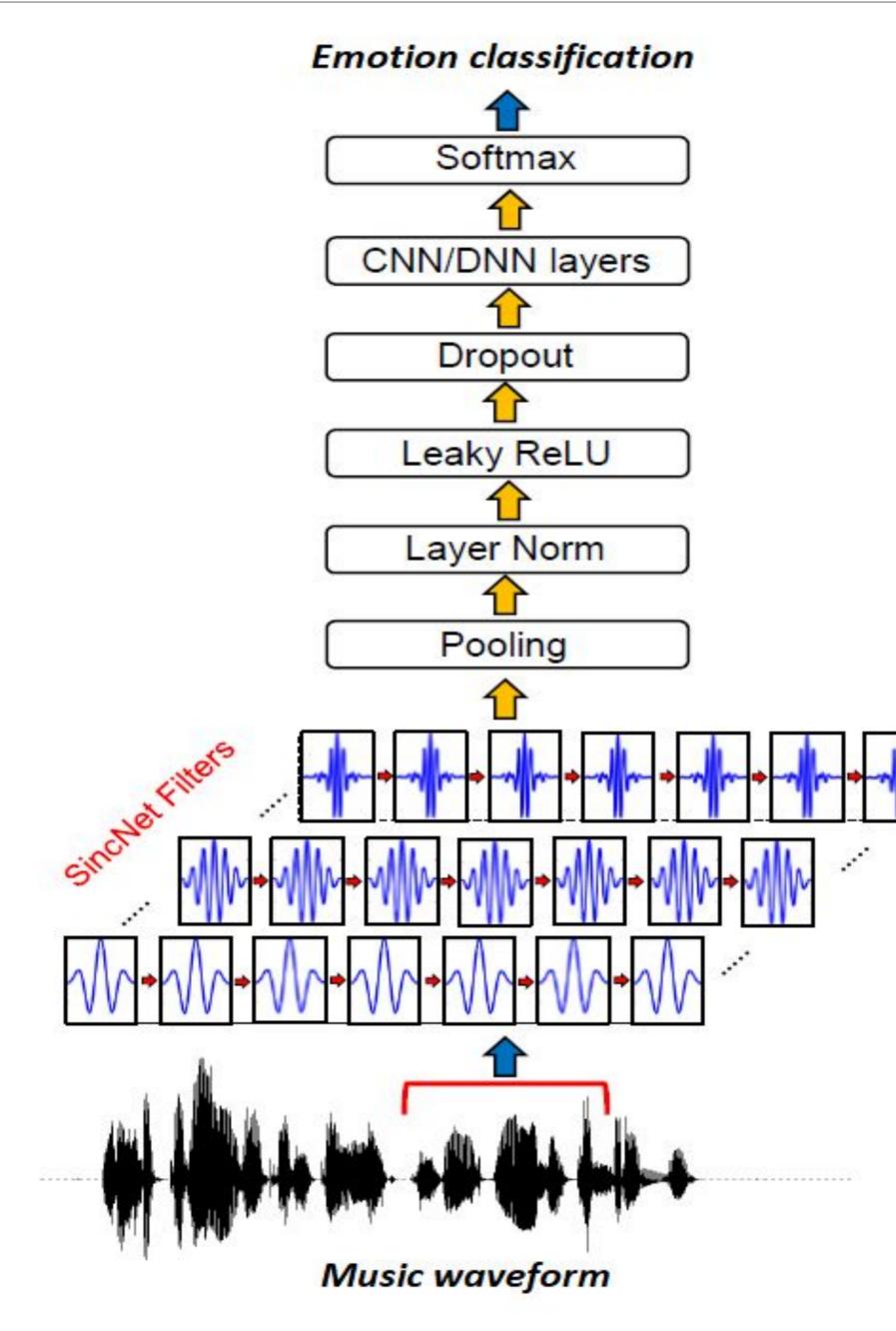


Fig 3. Summary of results. Underlined are best scores for each dataset from all training set-ups, in italics are best scores with SincNet. *Transfer learning set-ups as described above.

- Conclusions: end-to-end models need more data and better fine-tuning & general cues are learned from different cultures, but sensitivity is achieved with context-based fine-tuning
- Future work: continuous valence and arousal values, better data curation, data augmentation, bigger chunk and batch sizes, fine-tuning SincNet, exploring other cultures

References

[1] Russell, "A circumplex model of affect," J. Personal. Soc. Psychol., 1980. [2] Ravanelli and Bengio, "Speaker recognition from raw waveform with sincnet," IEEE Spoken Language Technology Workshop, 2018 [3] Soroush et al., "Emotion Classification through Nonlinear EEG Analysis Using Machine Learning Methods", Intern. Clinical Neuroscience Journal, 2018. [4] Panda, Malheiro and Paiva, "Novel audio features for MER," IEEE Trans. on Affective Computing, 2018 [5] Hu and Yang, "Cross-dataset and cross-cultural music mood prediction: A case on western and chinese pop songs," IEEE Trans. on Affective Computing, 2017.

[6] B. Er and B. Aydilek, "MER by using chroma spectrogram and deep visual features," Intern. J. of Computational Intelligence Systems, 2019. [7] Bogdanov and et al., "Essentia: an audio analysis library for mir," Intern. Soc. for MIR Conf., 2013.

[8] Schuller and et al., "Affective and behavioural computing: Lessons learnt from the first computational paralinguistics challenge," Computer Speech Language, 2018. [9] Pedregosa et al., "Scikit-learn: Machine Learning in Python, JMLR 12, 2011.

This project was developed as part of a Master's Thesis at UPF and can be found and reproduced from:

Acknowledgments

https://github.com/ana-pandrea/SincNet-MER

Fig 2. The SincNet architecture, adapted from [2]

MTG

Music Technology Group