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ABSTRACT 

The present study introduces a mathematical model for the 

symmetric phrasing scheme of German musicologist Hugo 

Riemann (1849–1919). The model is used to create an 

artificially expressive timing pattern in Max Reger’s 

(1873–1916) organ Prelude op. 135a/1 and is evaluated 

analytically against professional human interpretation. 

1. INTRODUCTION 

Quantitative research of expressive timing in musical 

performance on keyboard instruments has so far largely 

focused on the piano [1] and the harpsichord [2], whereas 

very little attention has been paid to the pipe organ. Few 

empirical studies on expressive organ performance have 

been published in recent decades [3-4], but they merely 

aim attention at J. S. Bach’s work and early music, that is 

why the observations made are stylistically inapplicable 

within the late Romantic framework. This research was 

initiated, therefore, to create a specific model of expressive 

timing for the organ performance according to distinct 

properties of the instrument, as well as indispensable 

attributes of the German late Romantic style. 

 

2. MODEL DESCRIPTION 

The fundamental Riemannian theory is brought into play 

for this task. The starting point for the model is Riemann’s 

motivic scheme, which shows how the short 3-notes or 2-

notes initial motives–“the smallest possible musical units 

of stand-alone expressive importance”–form larger groups 

in the symmetric hierarchical order [5] (see Figure 1).  

 

 
 

Figure 1. Riemann’s motivic scheme [5]. 

In order to create a mathematical model of this scheme, 

Riemann’s phrasing arcs on each level are simulated as 

positive semi-ellipses:  

𝑦𝑖𝑗 = (√1 − (𝑥 −
ℎ𝑖𝑗

𝑎𝑖𝑗
)

2

) ∗ 𝑏𝑖𝑗 + 𝑇,               (1) 

where i denotes the number of the level; j, sequence 

number of the ellipse on the ith level; aij, the long axe of an 

ellipse, corresponding to the Riemannian motivic length; 

hij, x-coordinate of the ellipse’s center, corresponding to 

the middle point of each motive; T, starting metronomic 

tempo value (constant); bij, the short axe of the ellipse, 

proportional to T: 

 𝑏𝑖𝑗 =  𝑒𝑖𝑗 ∗  𝑇                                   (2) 

The parameter e is defined as temporal elasticity: it shows 

the maximum of the model tempo deviation against the 

metronomic tempo for each level. If e = e0 is the temporal 

elasticity for the global arch over the whole piece (aij = a0 

= 0.5*(length of the piece)), then, in the symmetric case, 

temporal elasticities on subsequent levels are related to the 

e0 in the following way: 

𝑒𝑖𝑗 = 𝑒𝑖 =  1.5 ∗ 𝑒0 𝑁𝑖,⁄                    (3) 

where Ni is an overall quantity of ellipses on the ith level. 

However, in real performance practice, the absolute 

symmetry is rarely kept, and some irregularities may be 

possible. In the more general case, temporal elasticities 

take values: 

  𝑒𝑖𝑗 = 𝑘𝑖𝑗 ∗ 𝑒0 𝑁𝑖,⁄                             (4) 

where the weights coefficients kij may differ both within 

the specific level and over all levels.  Thus, the main goal 

of this research becomes finding parameters e0 and eij that, 

on the one hand, would preserve the Riemannian idea of 

the built-in motivic symmetry, and on the other hand, 

would approximate the real performance data and 

therefore might be used in computer simulation of 

expressive timing.  

 

3. ANALYTICAL EVALUATION OF THE SIMPLE 

SYMMETRIC MODEL 

The model was evaluated analytically on the Max Reger’s 

Choral Prelude op. 135a/1. It is a textbook example of  the 

Riemannian scheme with the time signature of 4/4 (Figure 

1, b): eight bars long, clear cadences in bars number 2, 4, 

6, 8. The performance data was collected as the MIDI 

recording of the professional organist interpretation at the 

Casavant organ at The Church of Saint Andrew and Saint 

Paul in Montreal (Canada). Temporal information was 

extracted through the manual beat-mapping process in 
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Logic Pro X and exported to Matlab for further processing. 

The local tempo at the sixteenth-note level was calculated 

with Matlab MIDI Toolbox as: 

 

𝑇(𝑛) = 60 ∗
𝑏𝑜𝑛𝑠𝑒𝑡(𝑛+1)−𝑏𝑜𝑛𝑠𝑒𝑡(𝑛)

𝑡𝑜𝑛𝑠𝑒𝑡(𝑛+1)−𝑡𝑜𝑛𝑠𝑒𝑡(𝑛)
 ,                 (5) 

 

where bonset and tonset are the onset time of note n in the 

score (in beats) and in the recording (in seconds), 

respectively. If there was no event at the sixteenth-note 

level, the local tempo value was interpolated and set to the 

local tempo of the preceding note (n-1). 

The model tempo curve Y involving the global arch and 

4 subsequent levels was created in Matlab as: 
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𝑎𝑖𝑗

)

2

) ∗ 𝑒𝑖𝑗 ∗ 𝑇

𝑁𝑖

𝑗=1

4

𝑖=1

          (6) 

  

with the following global set-up: starting tempo of the 

performance data T=27 bpm; total number of sixteenth 

notes in the piece S16=128; total number of note onsets 

nchuncks=S16+1=129; Y0, global arch obtained from the 

equation (1) with center h0 = S16 /2 = 64 and long axe  a0 

= S16 /2 = 64. For the subsequent levels, the quantities of 

ellipses Ni on the ith level are N1=2, N2=4, N3=8, N4=16. 

The center of the jth ellipse on the ith level is defined as  hij 

= mk * h0 / Ni , where mk =(2*k+1), k ∈ ℤ,  0   k  Ni -1, 

and aij = h0 / Ni  denotes the  long axe of the jth ellipse on 

the ith level.  

An example symmetrical model curve (normalized to 

the mean tempo value of human performance data) with 

temporal elasticity values  𝑒0 = 0.5 and 𝑒𝑖𝑗 =  1.5 ∗ 𝑒0 𝑁𝑖⁄  

is shown in Figure 2:  

 
 

Figure 2 Mathematical model for M. Reger’s op. 135a/1 

 

The performed regression of this simple symmetric 

model with fixed elasticity values against the human 

performance data gave R2=0.43 (p<0.001). It can be 

notionally compared, for example, with the results in [6], 

where the highest R2 obtained for timing from the 

somewhat similar symmetric model was R2=0.299. 

4. IMPROVED SYMMETRIC MODEL 

The built-in Matlab Nelder-Mead simplex algorithm was 

used to evaluate the generic model with the varying values 

of eij. Temporal elasticities for the model curve Y from (6) 

were represented as 𝑒𝑖𝑗 = 𝑘𝑖𝑗 ∗ 𝑒0 𝑁𝑖⁄ , and the coefficients 

kij together with the global value  e0 were set as parameters 

to optimize for the fminsearch function so to minimize 

the distance between Y and the performance data. The 

obtained optimized curve Y provided a highly significant 

R2=0.816 (p<0.001), which might compete with the values 

of the variance accounted for by a repeat human 

performance. 

5. DISCUSSION 

Despite the high value of R2, the parameters obtained 

through the optimization process cannot be directly used 

for the simulation because they contain information about 

both relevant (performer’s expressive intent) and 

irrelevant (e.g., related to the technical issues) tempo 

deviations. However, matching the most prominent trends 

in the obtained weights distribution to the music score 

details allowed to create a quite reliable model. For 

example, introducing the levels’ inequality (setting levels 

2 and 4 more elastic than levels 1 and 3) and boosting the 

temporal elasticity of the first ellipse at the second level 

resulted in the coefficient of determination R2=0.63 

(p<0.001). Planned research include collecting more data 

by analyzing the model on different short late Romantic 

organ pieces so to approach the automated weighting in the 

improved model, as well as evaluating model performance 

through the listening tests. 

6. CONCLUSION 

For the first time, the mathematical model of the 

Riemannian motivic scheme was created and evaluated 

analytically on organ music.  The model has a two-fold 

application: it can be used in performance analysis, as well 

as in computer simulation of expressive timing. 
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