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ABSTRACT

We introduce rolypoly~, the first drum machine for
live performance that adapts its microtiming in relation to
a human musician. We leverage state-of-the-art work in
expressive performance modelling with recurrent nets, to-
wards real-time application on the micro scale. Our mod-
els are pretrained on the Groove MIDI Dataset from Ma-
genta, and then fine-tuned iteratively over several duet per-
formances of a new piece. We propose a method for defin-
ing training targets based on previous performances, rather
than a prior ground truth. The agent is able to adapt to hu-
man timing nuances, and can achieve effects such as mor-
phing a rhythm from straight to swing.

1. INTRODUCTION

We are interested in the coupling between drum machine
and human player, with a view to extending their mutual
dynamics computationally [1]. We centre on the micro-
timing scale as a locus of expressive music interaction [2].

In studies on tempo and time-shift representation, [3]
posits that global tempo curves alone cannot account for
the alterations observed in performances of the same ma-
terial at different speeds. Nevertheless, score-driven au-
tomatic accompaniment has traditionally worked by com-
puting such a curve to drive the warping of a backing
track [4, 5]. Increasingly however, attention is also being
paid to the interpretation of real-time accompaniment on
the micro scale [6, 7]. By leveraging advances in natu-
ral language processing, recurrent neural network (RNN)-
based machine learning architectures have been shown to
produce state-of-the-art expressive outputs [8—10].

We delineate a set of design principles for a new mu-
sical agent. rolypoly~ is a score-driven drum machine
with the following characteristics: lightweight (inference
must be fast enough to run in real-time on an average, ac-
cessible computer), audio-interactive (must not only adapt
to incoming sound from human musicians, but also “lis-
ten" to its own output, coupled with the former), pro-
gressive/scalable (must not rely on existing duet/ensemble
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ground truth; rather, it builds up a performance corpus, ac-
cruing learning along the way), and score-agnostic (does
not require symbolic specification of the parts played by
other musicians).

2. AGENT ARCHITECTURE

The piece to be interpreted is represented as a sequence of
feature vector rows, encoding each drum hit and its context
(tempo, time signature, beat phase) at timestep ¢, and the
drum-target onset distance difﬁ,l (since this distance can
only be measured in hindsight). The output is a drum mi-
crotiming offset, y;, with its corresponding estimation
determining when in relation to the absolute notated time
the ¢-th drum hit will actually be triggered.

Since we do not rely on an existing drum-human duet
ground truth (no such dataset suitable for deep learning
exists), we define y after and as a function of a perfor-
mance, as follows.

We define a variable d; at timestep ¢ as the cumulated
realised offsets of score-to-drum and (variance-adjusted)
drum-to-target:
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We then use d; to determine the ground truth drum off-
sets for training the next iteration of the model, by sub-
tracting its mean (to keep outputs centred around zero) and
again applying deviation normalisation:
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A and B above are hyperparameters, controlling the
weighting of the target offsets and the cumulated offsets,
respectively. Their default setting is 1, allowing the timing
output to adapt gradually, without major fluctuations. For
rhythm morphing (see Section 3) they can be set to cancel
out the effect of variance scaling.

We propose two RNN-derived architectures that predict
each following drum timing based on the input features
received in real time. Both are defined and trained using
the PyTorch library, and communicate via OSC to Max,
which handles the audio playback and analysis.

The first model is built on a 2-layer unidirectional
LSTM network [11] with 256 hidden units fed into tanh
nonlinear activations. The result is passed through a linear
layer with a single output, 4.
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Figure 1. Rhythm morphing over three training iterations.
Score: dotted lines. g: blue stems. dif f: grey bars. Tran-
sition from straight (bottom) to swinging (top).

The second model is a simplification of the
Seq2Seq [12] architecture described in [9]. In our
case the source sequence is the complete pre-performance
input dataset (sans the unrealised audio-related features),
and the target is the performance dataset up to the current
timestep. The encoder is a bidirectional LSTM, and
the decoder is a 2-layer unidirectional LSTM with 256
hidden units. As with the first model, a fanh nonlinearity
and final linear layer project the decoder output to a
one-dimensional activation, g.

To pretrain our models we process a drums-only perfor-
mance dataset, the Groove MIDI Dataset (GMD) from Ma-
genta [9], the largest existing dataset of expressive drum-
ming. We predict residual drum offsets,' resulting in
audio-agnostic expressive interpreter models, ready to be
fine-tuned with subsequent performances.

The source code and trained models 2, notebook ® and
a demo video* are available online.

3. EXPERIMENTS

Figure 1 pictures the Seq2Seq model transitioning from a
straight 4/4 beat to a “swing" shuffle, where offbeats are
pushed slightly later—simply by “swinging" the respec-
tive notes on guitar for three iterations. Similarly we were
able to morph the pattern x..x..x. to three equally-
distanced triplets, as seen in the demo video.

The typical rolypoly~ use case consists in a song
being performed multiple times and the model learning in-
crementally after each take. Heuristically we found the
agent is able to limit the drum-target variance, and adapt to
structural patterns in the piece.

4. FUTURE WORK

We are exploring improvements to e.g. the target audio
representation, via the learning of a latent feature space of

! Thus, y measures the distance to the drum hit from its quantised po-
sition. While [9, 13] used 16 steps per bar, we chose a quantisation step
of 24, to better account for triplets and swing.

2 See https://github.com/RVirmoors/rolypoly/
tree/master/py.
3 See https://github.com/RVirmoors/rolypoly/

blob/master/py/rolypoly.ipynb.
4See https://youtu.be/UHBIzfc5DCI.

descriptors [7]. Presently, we are adding velocity to the
model, and porting the inference code into a Max external
using LibTorch. All the above are to be approached in the
context of building a multi-timescale hierarchical system.
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