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ABSTRACT

We propose an audio-to-audio neural network model that
learns to denoise old music recordings. Our model inter-
nally converts its input into a time-frequency representa-
tion by means of a short-time Fourier transform (STFT),
and processes the resulting complex spectrogram using a
convolutional neural network. The network is trained with
both reconstruction and adversarial objectives on a syn-
thetic noisy music dataset, which is created by mixing
clean music with real noise samples extracted from quiet
segments of old recordings. We evaluate our method quan-
titatively on held-out test examples of the synthetic dataset,
and qualitatively by human rating on samples of actual
historical recordings. Our results show that the proposed
method is effective in removing noise, while preserving
the quality and details of the original music.

1. INTRODUCTION

Archives of historical music recordings are an impor-
tant means for preserving cultural heritage. Most such
records, however, were created with outdated equipment,
and stored on analog media such as phonograph records
and wax cylinders. The technological limitation of the
recording process and the subsequent deterioration of the
storage media inevitably left their marks, manifested by
the characteristic crackling, clicking, and hissing noises
that are typical in old records. While “remastering” em-
ployed by the recording industry can substantially improve
the sound quality, it is a time-consuming process of man-
ual labor. The focus of this paper is an automated method
that learns from data to remove noise and restore music.

Audio denoising has a long history in signal process-
ing [1]. Traditional methods typically use a simplified
statistical model of the noise, whose parameters are es-
timated from the noisy audio. Examples of these tech-
niques are spectral noise subtraction [2, 3], spectral mask-
ing [4, 5], statistical methods based on Wiener filtering [6]
and Bayesian estimators [7, 8]. Many of these approaches,
however, focus on speech. Moreover, they often make
simplifying assumptions about the structure of the noise,
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which makes them less effective on non-stationary real-
world noise.

Recent advances in deep learning saw the emergence
of data-driven methods that do not make such a priori as-
sumptions about noise. Instead they learn an implicit noise
model from training examples, which typically consist of
pairs of clean and noisy versions of the same audio in a su-
pervised setup. Crucial challenges facing the adoption of
the deep learning paradigm for our task are: i) can we de-
sign a model powerful enough for the complexity of music,
yet simple and fast enough to be practical, and ii) how can
we train such a model, given that we have no clean ground
truth for historical recordings? In this paper, we address
these issues and show that it is indeed feasible to build an
effective and efficient model for music denoising.

1.1 Related Work

Sparse linear regression with structured priors is used in [9]
to denoise music from synthetically added white Gaussian
noise, obtaining large SNR improvements on a “glock-
enspiel” excerpt, and on an Indian polyphonic song. [10]
considers the problem of removing artifacts of perceptual
coding audio compression with low bit-rates. That work,
which uses LSTMs, is the first successful application of
deep learning for this type of music audio restoration. Note
that in contrast to our work, aligned pairs of original and
compressed audio samples are readily available. Statistical
methods are applied in [11] to denoise Greek Folk music
recorded in outdoor festivities. In [12], the author applies
structured sparsity models to two specific audio recordings
that were digitized from wax cylinders, and describes the
results qualitatively. In [13], the authors describe how to
fill in gaps (at known positions) of several seconds in mu-
sic audio, using self-similar parts from the recording itself.

Our method is also related to audio super-resolution,
also known as bandwidth extension. This is the process of
extending audio from low to higher sample rates, which re-
quires restoring the high frequency content. In [14,15] two
approaches which work for music are described. On piano
music, for example, [15] obtains an SNR of 19.3 when up-
sampling a low-pass filtered audio from 4kHz to 16kHz.

Many existing denoising approaches focus on speech
instead of music [16–19]. Given that these two domains
have very different properties, it is not clear a priori how
well such methods transfer to the music domain. Never-
theless, our work is inspired by recent approaches that use
generative adversarial networks (GANs) to improve the
quality of audio [18, 20, 21]. For example, [21] obtains
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significant improvements denoising speech and applause
sounds that have been decoded at a low bit-rate, using a
wave-to-wave convolutional architecture.

In this paper, we present a method to remove noise from
historical music recordings, using two sources of audio: i)
a collection of historical music recordings to be restored,
for which no clean reference is available, and ii) a separate
collection of music of the same genre that contains high-
quality recordings. We focus on classical music, for which
both public domain historical recordings as well as mod-
ern digital recordings are available. This paper makes the
following contributions:

• We provide a fully automated approach that suc-
ceeds in removing noise from historical recordings,
while preserving the musical content in high quality.
Quality is measured in terms of SNR and subjective
scores inspired by MUSHRA [22], and examples on
real historical recordings are provided 1 .

• Our approach employs a new architecture that trans-
forms audio in the time domain, using a multi-scale
approach, combined with STFT and inverse STFT.
As this architecture is able to output high-quality
music, it may be a useful architecture for other tasks
that involve the transformation of music audio.

• We provide an efficient and fully automated method
to extract noise segments (without music) from a
collection of historical music recordings. This is a
key ingredient of our approach, as it allows us to cre-
ate synthetic pairs of <clean, noisy> audio samples.

The rest of this paper is organized as follows. Our ap-
proach is described in detail in Section 2, and experimental
results are given in Section 3. We conclude in Section 4.

2. METHOD

Our model is an audio-to-audio generator learned from
paired examples with both reconstruction and adversarial
objectives.

2.1 Creating paired training examples

For training, we use time-aligned pairs of <clean, noisy>
examples, where clean music is used as targets, and noisy
music as inputs to the generator. We take a data-driven ap-
proach to generate noisy audio from clean references. We
synthesize noisy samples by simulating the degradation
process affecting the historical recordings, namely apply-
ing band-pass filtering, followed by additive mixing with
noise samples extracted from “quasi-silence” segments of
historical recordings.

Specifically, we scan the noisy historical recordings
looking for low-energy segments in the time domain,
which corresponds to pauses in the musical scores. To
this end, we compute the rolling standard deviation from
the raw audio samples with a window size equal to 100ms.

1 https://www.youtube.com/playlist?list=
PLa5CkN3odpnxi3WqMH4MgVk7XUjCP99d3

Then, we estimate an adaptive threshold τ based on the
q-th quantile of the standard deviations and keep the seg-
ments that satisfy the following two conditions: i) the
local standard deviation is below τ , and ii) the segment
has a minimum duration of T . Intuitively, the value of
q is selected based on a trade-off between the number of
extracted segments and the need of extracting noise-only
segments. In our experiments, we set q = 0.5% and
T = 100ms. In this way, from 801 different recordings,
we are able to extract around 8900 noise samples.

From each of these short noise segments, we need to
generate noise samples having the same length as the clean
audio references. We do this by replicating the noise seg-
ment in time, using overlap-and-add (OLA) with an over-
lap equal to 20% of the segment length. Given the short du-
ration of most noise segments, this operation alone would
lead to periodic noise patterns which differ from the noise
characteristics found in historical recordings. Therefore,
we alter each noise segment replica before the OLA syn-
thesis step in two ways: i) applying a random perturbation
to the phase of the noise segment (adding Gaussian noise
∼ N (0, 0.1) to the phase of the STFT); ii) applying a ran-
dom shift in time (with wraparound). We found that these
simple operations produce longer noise samples with audi-
tory characteristics similar to the ones encountered in the
historical recordings, avoiding artificial periodic patterns.

Finally, we create time-aligned pairs of <clean, noise>
examples by: i) applying band-pass filtering with cut-
off frequencies randomly sampled in [50Hz, 150Hz] and
[5kHz, 10kHz], respectively; ii) mixing a randomly se-
lected noise sample with a gain in the range [10dB, 30dB].

2.2 Model architecture

The generator processes the audio in the time-frequency
domain. It first computes the STFT of the input, the real
and imaginary components of which are then fed as a 2-
channel image to a 2D convolutional U-Net [23] followed
by an inverse STFT back to the time domain. Finally the
output is added back to the input, making the model a
residual generator.

The U-Net in our generator is a symmetric encoder-
decoder network with skip-connections, where the archi-
tecture of the decoder layers mirrors that of the encoder
and the skip-connections run between each encoder block
and its mirrored decoder block. Each encoder block is
a 3×3 convolution followed by either a 3×4 convolution
with stride of 1×2 (if down-sampling in the frequency di-
mension), or a 4×4 convolution with stride of 2×2 (if
down-sampling in both time and frequency dimensions).
We choose kernel sizes to be multiples of strides to ensure
even contribution from all locations of the input feature
map, which prevents the formation of checkerboard-like
patterns in resampling layers [24]. The decoder blocks
mirror the encoder blocks, and each consists of a trans-
posed convolution for up-sampling followed by a 3×3 con-
volution. Each decoder block additionally includes a short-
cut connection between its input and output. The shortcut
consists of a nearest-neighbor up-sampling layer, which
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Figure 1. Generator architecture. Dashed-line com-
ponents are included on a need-to-have basis: Up/down-
sampling of the input/output audio is needed for process-
ing at coarser resolutions in a multi-scale setup; The lin-
ear projection (by 1x1 convolution) in the decoder block is
present only when the output of the block has a different
number of channels from its input.

is followed by a linear projection using 1x1 convolution
when the output has a different number of channels from
the input. We do not include a shortcut in the encoder
block, since it already shares the same input with a U-Net
skip connection and therefore only needs to produce the
residual complementary to the skip path. The architecture
of the generator is shown in Figure 1.

We use two discriminators for the adversarial objective,
one in the waveform domain and one in the STFT domain.
The STFT discriminator has the same architecture as the
encoder module of the generator. For the waveform dis-
criminator, we use the same architecture as MelGAN [25]
except that we only double (instead of quadruple) the num-
ber of channels in the down-sampling layers. We found
this light-weight version to be sufficient in our setup, and
that using the full version had no additional benefit. Both
discriminators are fully convolutional. Hence the wave-
form discriminator produces a 1D output spanning the time
domain, and the STFT discriminator has a 2D output span-
ning the time-frequency domain.

We use weight normalization [26] and ELU activa-
tion [27] in the generator, while layer normalization [28]
and Leaky ReLU activation [29] with α = 0.3 are used in
the discriminator.

2.2.1 STFT Representation

In the generator, the STFT is represented by a 2-channel
image, where the channels are the real and imaginary com-
ponents. We also explored a polar representation, where
the channels are the modulus and the phase; additionally
we experimented with processing only the modulus chan-
nel and reusing the original phase, as is done in [30]. Nev-
ertheless, we found the real/imaginary representation to
perform better in our experiments.

Furthermore, we tried aligning the phase so that the
phase in each frame is coherent with a global reference
(e.g., the first frame) rather than its local STFT window.
Again, we observed no advantage in doing so, which sug-
gests that the neural network is capable of internally han-
dling the phase offsets. Unlike [30], we do not convert
STFT to logarithmic scale as we found it be detrimental to
performance (even with various smoothing and normaliza-
tion schemes).

2.2.2 Multi-scale Generator

We can further stack multiple copies of the generator de-
scribed above, each with its own separate parameters, in a
coarse-to-fine fashion: The generators at earlier stages pro-
cess the audio at reduced temporal resolutions, whereas the
later-stage generators focus on restoring finer details. This
is equivalent to halving the sampling rate in each scale.
This type of multi-scale generation scheme is routinely
used in computer vision and graphics to produce high-
resolution images (e.g., [31]).

Let K be the total number of scales, then generator Gk

at scale k (k ∈ {0, . . . ,K−1}) down-samples its input by
a factor of 2k before computing the STFT and up-samples
the output residual (after computing the inverse STFT) by
the same factor to match the resolution of the input. The
overall generator G is the composite of G0 ◦ · · · ◦GK−1.

Compared with simply stacking U-Nets all at the orig-
inal input resolution, as done in [32], the benefit of the
multi-scale approach is two-fold: i) the asymptotic compu-
tational complexity is constant with respect to the number
of scales, as opposed to linear in [32], due to exponentially
decreasing input sizes at coarser levels; ii) the intermediate
outputs of the generator correspond to the input audio pro-
cessed at lower resolutions, which allows us to meaning-
fully impose multi-scale losses on the intermediate outputs
in addition to the final output. We will describe how this
can be accomplished in the next section.

2.3 Training

The generator can be trained using the reconstruction loss
between the denoised output and the clean target. This can
be further complemented with an adversarial loss, given by
discriminators trained simultaneously with the generator, a
practice often used in audio enhancement (e.g., [18,20,30],
among others). In the case of our multi-scale generator, we
use the same number of waveform and STFT discrimina-
tors as generator scales. This way, there is one discrimina-
tor of both types for each of the (down-sampled) interme-
diate outputs and final output in each domain. For the ad-
versarial loss, we use the hinge loss averaged over multiple
scales. Since the discriminators are convolutional, this loss
is further averaged over time for the waveform discrimina-
tor and over time-frequency bins for the STFT discrimina-
tor. Similarly, the reconstruction loss is also imposed on
the outputs at each scale.

More formally, let (x, y) denote a training example,
where x is the noisy input and y is the clean target, and
k ∈ {0, . . . ,K−1} denote the scale index. Hence yk is the
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clean audio down-sampled to scale k, and ŷk represents the
intermediate output of the generator Gk ◦ · · · ◦ GK−1(x)
down-sampled to the same scale. Note that for the finest
scale k = 0 at full resolution, y0 = y is simply the origi-
nal clean audio and ŷ , ŷ0 = G(x) is the final output of
the generator. Thus the L1 reconstruction loss in the STFT
domain can be written as

Lrec
G = E(x,y)

[∑
k

‖ωk − ω̂k‖1
SSTFT
k

]
, (1)

where 2D complex tensors ωk and ω̂k denote the STFT of
down-sampled clean audio yk and generator output ŷk for
scale k, respectively, and SSTFT

k is the total number of time-
frequency bins in ωk and ω̂k. We find this STFT-based
reconstruction loss to perform better than either imposing
per-sample losses directly in the waveform domain or us-
ing losses computed from the internal “feature” layers of
discriminators (e.g. [25]).

For the adversarial loss, let t denote the temporal index
over all Tk logits of the waveform discriminator at scale
k (recalling that the discriminators are fully convolutional)
and let s denote the index over all Sk logits of the STFT
discriminator. Then discriminator losses in the wave and
STFT domains can be written as, respectively,

Lwave
D = Ey

∑
k,t

1

Tk
max(0, 1−Dwave

k,t (yk))

+

Ex

∑
k,t

1

Tk
max(0, 1 +Dwave

k,t (ŷk))

 (2)

LSTFT
D = Ey

∑
k,s

1

Sk
max(0, 1−DSTFT

k,s (yk))

+

Ex

∑
k,s

1

Sk
max(0, 1 +DSTFT

k,s (ŷk))

 , (3)

and the corresponding adversarial loss for the generator is
given by

Ladv
G = Ladv, wave

G + Ladv, STFT
G

= Ex

∑
k,t

1

Tk
max(0, 1−Dwave

k,t (ŷk)) +

∑
k,s

1

Sk
max(0, 1−DSTFT

k,s (ŷk))

 . (4)

The overall generator loss is a weighted sum of the ad-
versarial loss and the reconstruction loss, i.e.,

LG = Lrec
G + λ · Ladv

G . (5)

We set the weight of the adversarial loss λ to 0.01 in
all our experiments, except those where we do not use dis-
criminators (which corresponds λ=0). We train the model
with TensorFlow for 400,000 steps using the ADAM [33]

optimizer, with a batch size of 16 and a constant learning
rate of 0.0001 with β1 = 0.5 and β2 = 0.9. For the STFT,
we use a window size of 2048 and a hop size of 512 when
there is only a single scale. For each added scale we halve
the STFT window size and hop size everywhere. This way
the STFT window at the coarsest scale has a receptive field
of 2048 samples at the original resolution, whereas finer
levels have smaller receptive fields and hence focus more
on higher frequencies.

Our model has around 9 million parameters per scale in
the generator. At inference-time, it takes less than half a
second for every second of input audio on a modern CPU
and more than an order of magnitude faster on GPUs.

3. EXPERIMENTS

We evaluate our model on a dataset of synthetically gener-
ated noisy-clean pairs, using both objective and subjective
metrics. In addition, we also provide a subjective evalua-
tion on samples from real historical recordings, for which
the clean references are not available.

3.1 Datasets

Our data is derived from two sources: i) digitized histori-
cal music recordings from the Public Domain Project [34],
and ii) a collection of classical music recordings of CD-
quality. The historical recordings are used in two ways: i)
to extract realistic noise from relatively silent portions of
the audio, as described in Section 2.1; and ii) to evaluate
different methods based on the human-perceived subjec-
tive quality of their outputs. The modern recordings are
used for mixing with the extracted noise samples to cre-
ate synthetic noisy music, as well as serving as the clean
ground truth. We additionally filter our data to retain only
classical music, as it is by far the most represented genre
in historical recordings. The resulting dataset consists of
pairs of clean and noisy audio clips, both monophonic and
5 seconds long, sampled at 44.1kHz. The total duration of
the clean clips is 460h.

3.2 Quantitative Evaluation

We quantitatively evaluate the performance of different
methods on a held-out test set of 1296 examples from the
synthetic noisy music dataset. For the neural network mod-
els, whose training is stochastic, we repeat the training pro-
cess 10 times for each model and report the mean for each
metric and its standard error.

Evaluation metrics: Objective metrics such as the
signal-to-noise ratio (SNR) faithfully measure the differ-
ence between two waveforms on a per-sample basis, but
they often do not correlate well with human-perceived re-
construction quality. Therefore, we additionally measure
the VGG distance between the ground truth and the de-
noised output, which is defined as the L2 distance be-
tween their respective embeddings computed by a VGGish
network [35]. The embedding network is pre-trained
for multi-label classification tasks on the YouTube-100M
dataset, in which labels are assigned automatically based
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∆SNR (dB) -∆VGG
1 scale 3.4±0.0 0.68±0.01

2 scales 3.4±0.0 0.78±0.01
3 scales 3.2±0.0 0.73±0.01

Table 1. Performance of our model with different num-
bers of scales K in terms of SNR gain (∆SNR) and VGG
distance reduction (-∆VGG). Higher is better.

on a combination of metadata (title, description, com-
ments, etc.), context, and image content for each video.
Hence we expect the VGG distance to focus more on
higher-level features of the audio and less on per-sample
alignment. Note that the same embedding used by Frechét
audio distance (FAD) [36], which measures the distance
between two distributions. However, FAD does not com-
pare the content of individual audio samples, and is hence
not applicable to denoising.

We report the SNR gain (∆SNR) and VGG distance
reduction (-∆VGG) of the denoised output relative to the
noisy input, averaged over the test set. For reference, the
noisy input has an average SNR of 14.4dB and VGG dis-
tance of 2.09. Table 1 shows the performance of our model
with different numbers of scales. We use K = 2 scales for
the rest of our experiments. We evaluate variants of our
proposed model in an ablation study and compare with al-
ternative approaches and well-established signal process-
ing baselines:

• Ours, λ=0: Our model trained with only reconstruc-
tion loss.

• Ours, λ=0.01: Our model trained with both adver-
sarial and reconstruction losses.

• Ours, bypass phase: Same as above, except that
the phase of the noisy input is reused and only the
modulus of the STFT is processed by the U-Net (as
a single-channel image). This is similar to the ap-
proach of [30], but trained and evaluated for music
denoising instead of speech.

• MelGAN-UNet: A 1D-convolutional waveform-
domain generator inspired by MelGAN [25], where
the decoder is the same as the generator of MelGAN
and the encoder mirrors the decoder.

• DeepFeature generator: The 1D-convolutional
waveform-domain generator of [17], which does not
use U-Net but rather a series of 1D convolutions with
exponentially increasing dilation sizes. Unlike U-
Net, the temporal resolution and number of channels
remain unchanged in all layers of this network.

• log-MMSE: A short-time spectral amplitude esti-
mator for speech signals which minimizes the mean-
square error of the log-spectra [37]. In our imple-
mentation, the estimation of the noise spectrum is
based on low-energy frames across the whole clip,
rather than considering the frames at the start of the

audio clip. We use this deviation from the standard
implementation as it gives better SNR results.

• Wiener: A linear time-invariant filter that minimizes
the mean-square error. We adopted the SciPy [38]
implementation and used default parameters, as dif-
ferent parameter settings did not improve the results.

For waveform-domain generators, we tried waveform-
domain losses – including reconstruction losses in the “fea-
ture space” of discriminator internal layers [17, 25] – as
well as STFT-domain losses, and found the former to work
better with the DeepFeature generator while the latter gave
better results for the MelGAN-UNet generator. The results
shown for these generators are those obtained with the bet-
ter loss variant. We also divide the test set into three sub-
sets, each containing the same number of examples, with
low noise (avg. 19.8dB SNR), medium noise (avg. 14.2dB
SNR), and high noise (avg. 9.4dB SNR), and compute the
same metrics on each subset as well as on the full test set.

The results in Table 2 show that, for all noise levels,
our model consistently outperforms the signal processing
baselines and the waveform-domain neural network mod-
els, which have proven highly successful in speech en-
hancement but are not adequate for the complexity of mu-
sic signals. The signal-processing baselines (log-MMSE
and Wiener filtering) are hardly able to improve upon the
noisy input at all. This is not too surprising given the non-
Gaussian, non-white nature of the real-world noise in the
evaluation data. Comparing the results among the variants
of our model, we further make the following observations:

• Using adversarial losses does not help in terms of
SNR, as is evident from the top two rows of Table 2.
The SNR decrease is small but significant. The ad-
versarially trained variant, however, scores better on
the high-level feature oriented VGG distance metric,
which is in line with past observations [18, 25]

• It is advantageous to take both the modulus and the
phase into account when processing the STFT spec-
trogram, as the “bypass-phase” variant which reuses
the input phase produces consistently worse results
across all noise levels. This shows that the proposed
model is able to reconstruct the fine-grained phase
component of the original clean music.

3.3 Subjective Evaluation

In the previous section we compared results by means of
objective quality metrics, which can be quantitatively com-
puted from pairs of noisy-clean examples. These metrics
can be conveniently used to systematically run an evalua-
tion over a large number of samples. However, it is dif-
ficult to come up with an objective metric that correlates
with quality as perceived by human listeners. Indeed, the
SNR and VGG distance metrics do not agree in our quan-
titative evaluation – the proposed model is better in terms
of VGG distance, but worse in terms of SNR compared to
its counterpart without discriminator. We now describe our
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508



∆SNR (dB) -∆VGG
noise level noise level

low medium high all low medium high all
Ours, λ=0 2.5±0.0 4.1±0.0 4.3±0.0 3.7±0.0 0.30±0.01 0.47±0.01 0.58±0.01 0.45±0.01

Ours, λ=0.01 2.2±0.0 3.9±0.0 4.1±0.0 3.4±0.0 0.66±0.01 0.81±0.01 0.87±0.01 0.78±0.01
Ours, bypass phase 2.1±0.0 3.5±0.0 3.7±0.0 3.1±0.0 0.62±0.01 0.77±0.01 0.83±0.01 0.74±0.01

MelGAN-UNet 1.7±0.0 2.9±0.0 3.1±0.0 2.6±0.0 0.16±0.02 0.15±0.03 0.18±0.02 0.16±0.02

DeepFeature generator -0.7±0.4 1.3±0.1 1.7±0.1 0.8±0.2 0.00±0.02 0.03±0.02 0.00±0.01 0.01±0.02

log-MMSE -1.4 -0.2 0.1 -0.5 -0.15 -0.04 0.01 -0.07
Wiener 0.1 0.1 0.1 0.1 0.01 0.02 0.01 0.01

Table 2. Performance of different variants of our model and alternative approaches, evaluated on subsets of examples with
different noise levels as well as on the full test set.

s01 s02 s03 s04 s05 s06 s07 s08 s09 s10 all
sample

20

0

20

40

60

80

100

sc
or

e 
di

ffe
re

nc
e

logMMSE
=0.01
=0

Figure 2. Average score differences for the historical
recordings dataset, relative to the original noisy sample.

subjective evaluation which we ran in order to identify the
method that performs best when judged by humans.

Following recent work on low-bitrate audio improve-
ment [21], we use a score inspired by MUSHRA [22] for
our subjective evaluation. Each rater assigned a score be-
tween 0 and 100 to each sample. The main difference to
actual MUSHRA scores is that since no clean reference ex-
ists for historical recordings, we do not include an explicit
reference in the rated samples (although we do include the
clean sample in the synthetic dataset evaluation).

We perform our evaluation on 10 samples of historical
recordings, and separately on 10 samples from the syn-
thetic dataset, using 11 human raters. As in the objec-
tive evaluation, each sample is 5 seconds long. We eval-
uate the following four versions for each sample: (i) Orig-
inal historic audio example, (ii) denoised example using
our model with λ=0.01, (iii) denoised example using our
model with λ=0, (iv) denoised example using log-MMSE.

For the synthetic dataset, we use the four versions
above, but instead of the historic audio we use the syn-
thetically noisified one. We do not include Wiener filter-
ing as a competing baseline here since we noticed that it
produces outputs that are consistently near-identical to the
noisy input, and hence including it in the subjective eval-
uation would provide little value. We use the original
noisy audio as the reference from which to compute score
differences for the historical recordings, and the synthet-
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Figure 3. Average score differences for the synthetic
dataset, relative to the noisy sample.

ically noisified sample as the reference for the synthetic
data. The results are shown in Figure 2 for the historical
recordings, and in Figure 3 for the synthetic dataset. Error
bars are 95% confidence intervals, assuming a Gaussian
distribution of the mean. Both of our methods significantly
improve the historical recordings, by around 50 points on
average. In comparison, the logMMSE baseline only im-
proves by an average of 16 points. We also performed a
Wilcoxon signed-rank test between our λ=0.01 and λ=0
models, to find that the difference is statistically significant
(p-value < 1.19× 10−11). On the synthetic data, again the
λ=0 model outperforms the λ=0.01 variant, with a p-value
< 2.13 × 10−8. On the other hand, there is no significant
difference between the mean score differences of the λ=0
model and the clean sample (p-value = 0.097).

4. CONCLUSION

We presented a learning-based method for automated de-
noising and applied it to restoration of noisy historical mu-
sic recordings, matching a high quality bar: Judged by hu-
man listeners on actual historical records, our method im-
proves audio quality by a large margin and strongly out-
performs existing approaches on a MUSHRA-like quality
metric. On artificially noisified music, it even attains a
quality level that listeners found to be statistically indis-
tinguishable from the ground truth.
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