
INVESTIGATING U-NETS WITH VARIOUS INTERMEDIATE BLOCKS
FOR SPECTROGRAM-BASED SINGING VOICE SEPARATION

Woosung Choi1 Minseok Kim1 Jaehwa Chung2

Daewon Lee3 Soonyoung Jung1

1 Department of Computer Science and Engineering, Korea University, Republic of Korea
2 Department of Computer Science, Korea National Open University, Republic of Korea

3 Department of Computer Engineering, Seokyeong University, Republic of Korea
jsy@korea.ac.kr

ABSTRACT

Singing Voice Separation (SVS) tries to separate
singing voice from a given mixed musical signal. Re-
cently, many U-Net-based models have been proposed for
the SVS task, but there were no existing works that eval-
uate and compare various types of intermediate blocks
that can be used in the U-Net architecture. In this paper,
we introduce a variety of intermediate spectrogram trans-
formation blocks. We implement U-nets based on these
blocks and train them on complex-valued spectrograms to
consider both magnitude and phase. These networks are
then compared on the SDR metric. When using a particu-
lar block composed of convolutional and fully-connected
layers, it achieves state-of-the-art SDR on the MUSDB
singing voice separation task by a large margin of 0.9 dB.
Our code and models are available online. 1

1. INTRODUCTION

Singing Voice Separation (SVS), a special case of Mu-
sic Source Separation (MSS), aims at separating singing
voice from a given mixed musical signal. Recently, many
machine learning-based methods have been proposed for
SVS and MSS tasks. They can be categorized into two
groups: waveform-to-waveform models and spectrogram-
based models. While the former tries to generate the vocal
waveforms directly, the latter estimates spectrograms (usu-
ally magnitude) of vocal waveforms.

Typical spectrogram-based models apply Short-Time
Fourier Transform (STFT) on a mixture waveform to ob-
tain the input spectrograms. Then, they estimate the vo-
cal spectrograms based on these inputs and finally restore
the vocal waveform with inverse STFT (iSTFT). A vari-
ety of spectrogram-based models have been proposed in

1 https://github.com/ws-choi/ISMIR2020_U_Nets_SVS

c© Woosung Choi, Minseok Kim, Jaehwa Chung, Daewon
Lee, Soonyoung Jung. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Woosung Choi,
Minseok Kim, Jaehwa Chung, Daewon Lee, Soonyoung Jung, “Investi-
gating U-Nets with various Intermediate Blocks for Spectrogram-based
Singing Voice Separation”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

the music information retrieval community and the ma-
chine learning community. For example, [1] employed
the U-Net [2] architecture, an encoder-decoder structure
with symmetric skip connections. These symmetric skip
connections allow models to recover fine-grained details
of the target object during decoding effectively. Several
works [3–6] also used similar architectures.

They have revealed that U-Net-like architectures can
provide promising performance for SVS and MSS. Exist-
ing works have proposed various types of neural networks
for intermediate blocks. While some models [1, 3] used
simple Convolutional Neural Networks (CNNs) for inter-
mediate blocks, other advanced models tried more com-
plex intermediate blocks. For instance, MMDenseLSTM
[6] used densely connected CNNs followed by Long Short-
Term Memory (LSTM) networks to efficiently model long-
term structures, where LSTM is a variant of Recurrent
Neural Networks (RNNs). However, a thorough search of
the relevant literature indicated that there were no existing
works that evaluate and directly compare these different
types of blocks.

In this paper, we conduct a comparative study of U-Nets
on various intermediate blocks. We designed several types
of blocks based on different design strategies, which we
present in section 3. For each type of block, we imple-
mented at least one SVS model, which are all based on an
identical U-Net framework for fair comparisons. In sec-
tion 4, we summarize the experimental results and discuss
the effect of each design choice. We validate hypotheses
such as that inserting time-distributed operations (see §3.1)
into intermediate blocks can significantly improve perfor-
mance, which led to state-of-the-art (SOTA) performance
on the MUSDB [7] SVS task.

Finally, our U-Net framework directly estimates the tar-
get complex-valued spectrogram (viewing real and imagi-
nary as separate channels), when many existing models es-
timate the target magnitude without phase. In general, con-
sidering phase information improves the separation qual-
ity, as discussed in [8, 9]. Several phase-aware meth-
ods have been proposed for speech enhancement, such as
phase reconstruction methods [8,9], or using raw complex-
valued STFT outputs [10, 11]. In section 4, we show that
the latter method is an efficient way to improve magnitude-
only models, only needing a few minor adjustments.

192



2. U-NET-BASED SVS FRAMEWORK

In this section, we describe a U-Net-based SVS frame-
work, which is shared by several models in §4. We first
introduce the ‘Complex as Channel framework’ (CaC), a
spectrogram-based SVS framework, and then define our
U-Net architecture for spectrogram estimation in CaC.

2.1 Complex as Channel Framework

CaC is a singing voice separation framework based on
complex-valued spectrogram estimation. It takes a c-
channeled mixture signal, and outputs c-channeled singing
voice signal. As shown in Figure 1, CaC consists of three
parts as follows:

1. The spectrogram extraction layer extracts a mixture
spectrogram by applying STFT to the c-channeled
input signal. The output of STFT is a complex-
valued spectrogram with c-channels. Consider-
ing the imaginary and real parts as separate real-
valued channels, we view the mixture spectrogram
Mcomplex ∈ Cc×T×F as a (2c)-channeled real-
valued spectrogram M ∈ R(2c)×T×F , where T de-
notes the number of frames and F denotes the num-
ber of the frequency bins in the spectrogram.

2. The complex-valued spectrogram estimation net-
work is a neural network that takes the spectrogram
M of a mixture signal as input and estimates the tar-
get spectrogram T̂ ∈ R (2c)×T×F , which is used for
reconstructing the vocal signal later.

3. The signal reconstruction layer reshapes the esti-
mated spectrogram T̂ into the complex-valued spec-
trogram T̂complex ∈ C c×T×F , as shown in Figure
1. It then restores the estimated singing voice signal
via inverse-STFT on T̂complex.

Figure 1. The Complex as Channel Framework

For a given mixture spectrogram M, we train the
complex-valued spectrogram estimation network in a su-
pervised fashion to minimize the mean square error be-
tween the output T̂ and the ground-truth spectrogram T
of the singing voice signal.

It should be noted that the shape of M and T̂ is (2c) ×
T × F , considering real and imaginary parts of a spec-
trogram as separate real-valued channels. This approach
allows CaC to fully utilize the information in complex-
valued spectrograms for both the input and the output.
Meanwhile, current SOTA models (e.g., SA-SHN [4] and
DGRU-DGConv [12]) decompose a complex-valued spec-
trogram into magnitude and phase, and only use the mag-
nitude for the input of their networks. Although SA-SHN
and DGRU-DGConv yielded impressive results by intro-
ducing novel attention method [4] and by adopting dilated
1-D convolutions [12] with Gated Recurrent Units (GRU)
[13] respectively, they do not consider phase information.
In §4.5, we compare the Source-to-Distirtion (SDR) [14]
performance of models based on the CaC framework and
that of models based on the Magnitude-only framework.

2.2 U-Net Architecture for Spectrogram Estimation

For spectrogram estimation in CaC, we use a U-Net-based
architecture. It consists of an encoder and a decoder: the
encoder transforms M into a downsized spectrogram-like
representation, and the decoder takes it and returns the es-
timated target spectrogram T̂ . Before we describe them in
detail, we introduce two types of main components in the
architecture as follows.

• An intermediate block transforms an input
spectrogram-like tensor into an equally-sized tensor
(possibly with a different number of channels).

• A down/up sampling layer halves/doubles the scale
of an input tensor either in the time, frequency, or
Time-Frequency domain.

Figure 2. U-Net Architecture for Spectrogram Estimation

As shown in Figure 2, the number of down-sampling
layers and the number of up-sampling layers are the same.
Also, it uses the same number of intermediate blocks in
the encoding and the decoding phase. It has an additional
block in between its encoder and decoder. Thus, the total
number of blocks should be an odd integer. It has skip con-
nections that concatenate output feature maps of the same
scale between the encoder and the decoder.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

193



Besides basic components, our architecture has two ad-
ditional convolution layers, as illustrated in Figure 2. We
use them to increase or restore the number of channels. Be-
fore describing them, let us introduce some notations. We
denote the input of the l-th intermediate block by X(l−1),
and the output by X(l). The size of X(l−1) is denoted
by c

(l)
in × T (l) × F (l), where c

(l)
in represents the number

of channels and and T (l) × F (l) represents the size of the
spectrogram-like tensor. Also, we denote the size of X(l)

by c
(l)
out × T (l) × F (l), where c

(l)
out is the number of chan-

nels. Using these notations, we denote the input of the
first block by X(0), and its size by c

(1)
in × T (1) × F (1). To

increase the number of channels, it applies a 1 × 2 con-
volution with c

(1)
in output channels followed by ReLU [15]

activation to the given input M. To adjust the number of
channels, it also applies a final 1×2 convolution with (2c)
output channels to the output of the final block. Note that
the last layer is not followed by any activation function
since target TF bins can be negative. We empirically set
the parameter c

(1)
in to be 24 in our experiments. Models

with smaller c(1)in (e.g., 12) are trained faster, but usually
perform inferior than models with larger size of c(1)in .

We can implement various SVS models based on this
architecture in the CaC framework because multiple op-
tions are available for intermediate blocks. In section 3,
we present several neural networks which can be used as
intermediate blocks in this paper.

3. INTERMEDIATE BLOCKS

We present several types of intermediate blocks based
on different design strategies. We first present time-
distributed blocks and then present time-frequency blocks.

3.1 Time-Distributed Blocks

Some existing models use CNNs (e.g., [16]) for intermedi-
ate blocks to extract timbre features of the target source.
However, the authors of [8] reported that conventional
CNN kernels are limited for this task. They found that
long-range correlations exist along the frequency axis in
the spectrogram of voice signals, which Fully-connected
Neural Networks (FCNs) can efficiently capture. They
proposed a model named Phasen for speech enhancement,
which uses the Frequency Transformation Block (FTB)
that has a single-layered FCN without bias. This FCN is
applied to each frame of the internal representation in a
time-distributed manner.

Inspired by TFB, we introduce time-distributed blocks,
which are applied to a single frame of a spectrogram-like
feature map. These blocks try to extract time-independent
features that help singing voice separation without using
inter-frame operations. We first introduce an FCN-based
block and then propose an alternative time-distributed
block based on 1-D CNNs.

3.1.1 Time-Distributed Fully-connected networks

We present an FCN-based intermediate block, called Time-
Distributed Fully-connected network (TDF). As illustrated

in Figure 3, a TDF block is applied to each channel of each
frame separately and identically.

Figure 3. Time-Distributed Fully-connected networks

Suppose that the l-th intermediate block in our U-Net
structure takes input X(l−1) into an output X(l). As shown
in Figure 3, a fully-connected network is applied separately
and identically to each frame (i.e., X(l−1)[i, j, :]) in order
to transform an input tensor in a time-distributed fashion.
While an FTB of Phasen [8] is single-layered, a TDF block
can be either single- or multi-layered. Each layer is defined
as consecutive operations: a fully-connected layer, Batch
Norm (BN) [17], and ReLU [15]. If it is multi-layered,
then each internal layer maps an input to the hidden feature
space, and its final layer maps the internal vector to RF (l)

.
The number of hidden units is bF (l)/bnc, where we denote
the bottleneck factor by bf . We can reduce parameters if
we use two-layered TDFs of bf > 2. We investigate the
effect of adding additional layers in §4.2.

3.1.2 Time-Distributed Convolutions

We propose an alternative time-distributed block named
Time-Distributed Convolutions (TDC), which is applied
separately and identically to each multi-channeled frame.
It is a series of 1-D convolution layers. Inspired by [5,6], it
takes form of a dense block [18] structure. A dense block
consists of densely connected composite layers, where
each composite layer is defined as three consecutive op-
erations: 1-D convolution, BN, and ReLU. As discussed
in [5, 6, 18] the densely connected structure enables each
layer to propagate the gradient directly to all preceding lay-
ers, making a deep CNN training more efficient.

Figure 4. Time-Distributed Convolutions

3.2 Time-Frequency Blocks

The performances of U-Nets with time-distributed blocks
were above our expectation (see §4.2), but were still infe-
rior considerably to those of current SOTA methods. The
reason is that features observed in musical sources include
sequential patterns (e.g., vibrato, tremolo, and crescendo)
or musical patterns (e.g., rhythm, repetitive structure),
which cannot be modeled by time-distributed blocks.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

194



While time-distributed blocks cannot model the tem-
poral context, time-frequency blocks try to extract fea-
tures considering both the time and the frequency dimen-
sions. We introduce the Time-Frequency Convolutions
(TFC) block, which is used in [5]. We also propose two
novel blocks that combine two different transformations.

3.2.1 Time-Frequency Convolutions

The Time-Frequency Convolutions (TFC) is a dense block
of 2-D CNNs, as shown in Figure 5. The dense block con-
sists of densely connected composite layers, where each
layer is defined as three consecutive operations: 2-D con-
volution, BN, and ReLU. It is applied to the spectrogram-
like input representation in the time-frequency domain.
Every convolution layer in a dense block has kernels of
size (kF , kT ). Its 2-D filters are trained to jointly capture
features along both frequency and temporal axes.

Figure 5. Time-Frequency Convolutions

3.2.2 Time-Frequency Convolutions with TDF

We propose the Time-Frequency Convolutions with Time-
Distributed Fully-connected networks (TFC-TDF) block.
It utilizes two different blocks inside: a TFC block and
a TDF block. Figure 6 describes a TFC-TDF block. It
first maps the input X(l−1) to a same-sized representation
with c

(l)
out channels by applying the TFC block. Then the

TDF block is applied to the dense block output. A residual
connection is also added for efficient gradient flow.

Figure 6. Time-Frequency Convolutions with TDF

Phasen [8] has shown that inserting time-distributed
operations into intermediate blocks can improve speech
enhancement performance. We validate whether it also
works for SVS or not in §4.3.

3.2.3 Time-Distributed Convolutions with RNNs

We propose an alternative way to consider both the time
and frequency dimensions. A Time-Distributed Convolu-
tions with Recurrent Neural Networks (TDC-RNN) block
uses two different blocks: a TDC block for extracting tim-
bre features and RNNs for capturing temporal patterns. It
extracts timbre features and temporal features separately,
unlike a TFC block. We validate whether this approach can

outperform the 2-D CNN approach by comparing TDC-
RNNs with TFCs in §4.3.

The structure of a TDC-RNN block is similar to that of
a TFC-TDF block. It applies the TDC block to an input
X(l−1), and obtains a same sized hidden representation
with c

(l)
out channels. The RNNs compute the hidden rep-

resentation and output an equally sized tensor. A residual
connection is added, as is a TFC-TDF block.

4. EXPERIMENT

We evaluate U-Nets with different types of blocks intro-
duced in §3. We compare the performance of models in
§4.2 and §4.3. Also, we compare our models with SOTA
models in §4.4. We compare the spectrogram estimation
framework in §4.5. We discuss reusable insights in §4.6.

4.1 Setup

4.1.1 Dataset

Train and test data were obtained from the MUSDB dataset
[7]. The train and test sets of MUSDB have 100 and 50 mu-
sical tracks each, all stereo and sampled at 44100 Hz. Each
track file consists of the mixture and its four source audios:
‘vocals,’ ‘drums,’ ‘bass’ and ‘other.’ Since we are evaluat-
ing on singing voice separation, we only use the ‘vocals’
source audio as the separation target for each mixture track.

4.1.2 Model Configurations

We implemented U-Nets with different blocks (§3). Each
model is based on the U-Net architecture (§2.2) on the
CaC framework (§2.1). We set c(1)in , the number of internal
channels to be 24, as mentioned in §2.2. Each model uses
a single type of block for its intermediate blocks. We usu-
ally used an FFT window size of 2048 and a hop size of
1024 for STFT. However, we used a larger window size in
some models for a fair comparison with SOTA methods.

4.1.3 Training and Evaluation

Weights of each model were optimized with RMSprop
[19] with learning rate lr ∈ [0.0005, 0.001] depending on
model depth. Each model is trained to minimize the mean
square error between T̂ and T as mentioned in §2.1. We
use the default validation set (14 tracks) as defined in the
MUSDB package, and use the Mean Squared Error (MSE)
between target and estimated signal (waveform) as the val-
idation metric for validation. Data augmentation [20] was
done on the fly to obtain fixed-length mixture audio clips
comprised of the source audio clips from different tracks.

We use the official evaluation tool 2 provided by the
organizers of the SiSEC2018 [21] to measure Source-to-
Distortion Ratio (SDR) [14]. We use the median SDR
value over all the test set tracks to obtain the overall SDR
performance for each run, as done in the SiSEC2018. We
report the average of ‘median SDR values’ over three runs
for each model.

2 https://github.com/sigsep/sigsep-mus-eval

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

195



block type # blocks # params SDR
TDC (w/ sampling) 17 0.54M 4.86
TDC (w/o sampling) 17 0.52M 3.78
TDC (w/o sampling) 3 0.09M 3.56
TDF (w/o hidden layer) 17 2.83M 4.75
TDF (w/ hidden layer) 17 1.44M 4.05
TDF (w/ hidden layer) 3 1.19M 4.01

Table 1. Evaluation results of Time-Distributed Blocks.

4.2 U-Nets with Time-Distributed Blocks

We implemented and trained U-nets with TDC and TDF
blocks. We also implemented models with TDC blocks
that do not use down/up-sampling to investigate the ef-
fect of down/up-sampling in the frequency axis. The other
models use 1-D convolution/transposed-convolution layers
with stride 2 for down/up-sampling. Every TDC block is a
dense block with 5 composite layers with the growth rate
24 (used in dense blocks [18]). The kernel size of each
convolution layer in a dense block is 3. Each TDF block is
either single-layered or two-layered. The bottleneck factor
bf of each TDF block is set to be 4. All models have 17
intermediate blocks except for two shallow models.

We summarize evaluation results in Table 1. The TDC
block-based U-Net with sampling achieves an SDR of
4.86, the highest among the three models. Results show
that the use of down/up-sampling in TDC-based U-Nets
was significant, although the model without sampling can
exploit higher resolution of internal representations. It
may indicate that enlarging receptive fields via sampling
may help the model to capture long-term dependencies bet-
ter, and long-term dependencies are preferred over local
features when distinguishing unique time-independent fre-
quency patterns. (at least for these configurations).

Although FCNs can capture long-ranged patterns along
the frequency domain, as mentioned in [8], TDF-based U-
Nets did not perform well enough compared to the TDC-
based models in a deep architecture. Among TDF-based
models, the U-Net equipping single-layered TDFs (the
fourth row of Table 1) outperforms the other models. How-
ever, it is notable that we can reduce parameters when we
use two-layered TDFs. Also, we found that the TDF blocks
can outperform TDC blocks in a shallow architecture (the
third and sixth row of Table 1). The reason is that the
U-Nets with few TDC blocks has a small receptive field,
while a single TDF block has a full receptive field in the
frequency dimension, which has led us to inject it in a time-
frequency block instead of TDC (see §3.2.2).

4.3 U-Nets with Time-Frequency Blocks

We implemented U-Nets with time-frequency blocks. All
models are trained on 3 seconds (128 STFT frames) of mu-
sic. Since the number of frequency bins is much larger
than the number of frames, models with more than 7 neu-
ral transforms use both 2 × 2 or 2 × 1 sized down/up-
sampling layers to scale the frequency axis more than 3

model sampling # blocks # params SDR
TFC O 17 1.56M 6.89
TFC X 17 1.56M 6.75
TDC-RNN O 17 2.08M 6.69
TFC-TDF O 7 0.99M 7.07
TFC-TDF O 17 1.93M 7.12

Table 2. Evaluation results of Time-Frequency Blocks.

times while maintaining the number of scales in the tem-
poral axis to 3. Exceptionally, we use different down/up-
sampling layers for one model to investigate the effect of
down/up-sampling in the temporal axis.

We set every TFC block to have 5 convolution layers
with kernel size 3× 3. We set the growth rate to be 24, the
same growth rate of §4.2. By using this TFC block config-
uration, we implemented a TFC-based U-Net (the first row
of Table 2). We set the model in the second row to use dif-
ferent down/up-sampling layers to investigate the effect of
down/up-sampling in the temporal axis. Every kernel size
used in each down/up-sampling layer of this model is 2×1
to preserve the temporal resolution while scaling frequency
resolution. The first two rows of Table 2 summarize the
experiment results of two TFC-based models. The model
that preserves the temporal resolution was slightly inferior
to the other model. It is also notable that our U-Nets with
TFC blocks achieve comparable results with state-of-the-
art methods 4.4, even using lower frequency resolution.
Compared to the frequency axis where the TDC-based U-
Net with down/up-sampling outperforms the counterpart
model, no significant SDR was gained by enlarging the re-
ceptive field by down/up-sampling.

We reused the configuration of TDC in of §4.2, for
TDCs in TDC-RNN blocks. The RNN layers were im-
plemented with bidirectional GRUs with a single hidden
layer, which has f/16 hidden units, where f is the number
of input frequency bins. Although having more parame-
ters and a better potential for capturing long temporal de-
pendencies than the two fully convolutional models, TDC-
RNN performs lower than them. Increasing the number of
hidden units or hidden layers could have increased SDR
since many other state-of-the-art recurrent models use a
hidden size that is at least 512. Increasing the number of
STFT frames, thus training on longer clips of music, might
have also worked. Although it performs the worst among
the time-frequency blocks, it is superior to all the time-
distributed blocks. It indicates that inter-frame operations
are necessary for higher quality separation.

The fourth and fifth rows of the Table 2 shows promis-
ing results regarding the U-Nets with TFC-TDF blocks.
We reused the same TFC setting above, and we set bf to
be 16 for each TDF. The 7-blocked U-Net with TFC-TDFs
outperforms the other 17-blocked models. These results
show that inserting FCNs into intermediate blocks can be
useful for MSS as well as for Speech Enhancement [8].
Also, results show that it is also achievable with fewer pa-
rameters by using FCNs with a bottleneck layer.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

196



model # parameters SDR (vocals)
DGRU-DGConv more than 1.9M 6.99

TAK1 1.22M 6.60
UMX 8.89M 6.32

TFC-TDF (small) 0.99M 7.07 ±.08
TFC-TDF (large) 2.24M 7.98 ±.07

Table 3. Comparison: SDR median value on test set.

esimation n_fft # blocks # params SDR
CaC 2048 7 0.99M 7.07
Mag 2048 7 0.99M 6.43
CaC 4096 9 2.24M 7.98
Mag 4096 9 2.24M 7.24

Table 4. Comparison of TFC-TDFs: CaC vs Mag

4.4 Comparison with SOTA models

We compare our models with other spectrogram-based
models on the MUSDB benchmark. The first three rows
of Table 3 shows the SDR performance of SOTA models,
namely DGRU-DGConv [12], TAK1 [6], and UMX [22].
Their SDRs can be found in [12], SiSEC2018 repository 3 ,
and UMX repository 4 . We estimated the lower bound
of the number of parameters of DGRU-DGConv with 1-
D CNN parameters without considering its GRUs.

Comparing with Table 2, we can see that our models
perform comparably to or even outperform existing models
even with less frequency resolution and fewer parameters.
On top of that, our TFC extensions do not use recurrent
layers, which is a key factor in the other previous models.
It may lead to shorter forward/backward propagation time.
Also, it is worth noting that previous models adopt Multi-
channel Wiener Filtering as a post-processing method to
further enhance SDR. Ours directly use the signal recon-
struction output without such post-processing.

For a fair comparison with SOTA models, we trained
an additional U-Net with 9 TFC-TDF blocks (notated as
‘large’ in Table 3) with the same frequency resolution
as the other SOTA models (FFT window size = 4096)
and achieved outstanding results with a 0.9 dB gain over
DGRU-DGConv.

4.5 Spectrogram Estimation: Complex vs Magnitude

For our final experiment, we see how much SDR was
gained by extending a magnitude-only model into a CaC
model. Our TFC-TDF-based U-Nets in Table 4 are com-
pared to their magnitude-only form (referred to as ‘Mag’).
They use the same hyperparameter set except for c(0)in , the
input/output number of channels. Mag also has an addi-
tional ReLU after the final 1 × 1 convolution to obtain
non-negative-valued output spectrograms. Results show
that training with raw STFT outputs instead of magnitudes

3 https://github.com/sigsep/sigsep-mus-2018
4 https://github.com/sigsep/open-unmix-pytorch

significantly boosts SDR performance. It is also notable
that the Mag model with n_fft of 4096 still outperforms all
previous state-of-the-art models in Table 3.

4.6 Discussion: Developing Reusable Insights

Our work provides a practical guideline for choosing fun-
damental building blocks to develop an SVS or MSS model
based on the U-Net architecture as follows.

• TDC-based models are sensitive to the number of
blocks, compared to TDF-based models.

• Using down/up-sampling is important for CNN-
based blocks, especially in the frequency dimension.

• Stacking 2-D CNNs is a simple but effective way to
capture T and F features, compared to TDC-RNNs.

• Injecting a time-distributed block to a time-
frequency block can improve SDR.

• A simple extension from a magnitude-only U-Net to
a CaC U-Net can improve SDR.

Our work is not limited to the U-Net-architecture nor
MSS. Blocks can be used as core components in more
complex architectures as well. We can use different types
of blocks for a single model, meaning that a lot of space
remains for improvement. Also, our observations can be
exploited in other MIR tasks such as Automatic Music
Transcription (AMT) or Music Generation: for example,
we expect that injecting TDFs to intermediate blocks for
f0 estimation model can improve performance since fully-
connected layer can efficiently model long-range correla-
tions such as harmonics.

5. CONCLUSION AND FUTURE WORKS

In this paper, we designed several types of blocks based on
different design strategies. We implemented U-Net mod-
els with these blocks for SVS and evaluated their perfor-
mance. Our experiments provide abundant material for
future works by comparing several U-Nets with different
types of blocks. Also, one of our models outperforms
SOTA methods. For future work, we would like to extend
this model to utilize attention networks for modeling long-
term dependencies observed in both the frequency and the
temporal axis.

6. ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIT) (No. NRF-2019R1F1A1062719, NRF-
2020R1A2C1012624).

7. REFERENCES

[1] J. Andreas, H. Eric, M. Nicola, B. Rachel, K. Aparna,
and W. Tillman, “Singing voice separation with deep
u-net convolutional networks,” in 18th International

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

197



Society for Music Information Retrieval Conference,
2017, pp. 23–27.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net:
Convolutional networks for biomedical image seg-
mentation,” in International Conference on Medical
image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[3] S. Park, T. Kim, K. Lee, and N. Kwak, “Music source
separation using stacked hourglass networks,” arXiv
preprint arXiv:1805.08559, 2018.

[4] W. Yuan, S. Wang, X. Li, M. Unoki, and W. Wang, “A
skip attention mechanism for monaural singing voice
separation,” IEEE Signal Processing Letters, vol. 26,
no. 10, pp. 1481–1485, Oct 2019.

[5] N. Takahashi and Y. Mitsufuji, “Multi-scale multi-band
densenets for audio source separation,” in 2017 IEEE
Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA), Oct 2017, pp. 21–25.

[6] N. Takahashi, N. Goswami, and Y. Mitsufuji, “Mm-
denselstm: An efficient combination of convolutional
and recurrent neural networks for audio source separa-
tion,” in 2018 16th International Workshop on Acous-
tic Signal Enhancement (IWAENC). IEEE, 2018, pp.
106–110.

[7] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis,
and R. Bittner, “MUSDB18 - a corpus for music
separation,” Dec. 2017, mUSDB18: a corpus
for music source separation. [Online]. Available:
https://hal.inria.fr/hal-02190845

[8] D. Yin, C. Luo, Z. Xiong, and W. Zeng, “Phasen: A
phase-and-harmonics-aware speech enhancement net-
work,” arXiv preprint arXiv:1911.04697, 2019.

[9] N. Takahashi, P. Agrawal, N. Goswami, and Y. Mitsu-
fuji, “Phasenet: Discretized phase modeling with deep
neural networks for audio source separation.” in Inter-
speech, 2018, pp. 2713–2717.

[10] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Sub-
ramanian, J. F. Santos, S. Mehri, N. Rostamzadeh,
Y. Bengio, and C. J. Pal, “Deep complex networks,”
in International Conference on Learning Representa-
tions, 2018.

[11] S.-W. Fu, T.-y. Hu, Y. Tsao, and X. Lu, “Complex spec-
trogram enhancement by convolutional neural network
with multi-metrics learning,” in 2017 IEEE 27th In-
ternational Workshop on Machine Learning for Signal
Processing (MLSP). IEEE, 2017, pp. 1–6.

[12] J.-Y. Liu and Y.-H. Yang, “Dilated convolution
with dilated gru for music source separation,”
in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-
19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 4718–4724.

[Online]. Available: https://doi.org/10.24963/ijcai.
2019/655

[13] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-
decoder for statistical machine translation,” arXiv
preprint arXiv:1406.1078, 2014.

[14] E. Vincent, R. Gribonval, and C. Févotte, “Perfor-
mance measurement in blind audio source separation,”
IEEE transactions on audio, speech, and language pro-
cessing, vol. 14, no. 4, pp. 1462–1469, 2006.

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse
rectifier neural networks,” in Proceedings of the four-
teenth international conference on artificial intelli-
gence and statistics, 2011, pp. 315–323.

[16] P. Chandna, M. Miron, J. Janer, and E. Gómez,
“Monoaural audio source separation using deep con-
volutional neural networks,” in International confer-
ence on latent variable analysis and signal separation.
Springer, 2017, pp. 258–266.

[17] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” in International Conference on Machine
Learning, 2015, pp. 448–456.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
berger, “Densely connected convolutional networks,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2017, pp. 4700–4708.

[19] G. Hinton, N. Srivastava, and K. Swersky, “Neural
networks for machine learning lecture 6a overview of
mini-batch gradient descent,” Cited on, vol. 14, p. 8,
2012.

[20] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp,
N. Takahashi, and Y. Mitsufuji, “Improving music
source separation based on deep neural networks
through data augmentation and network blending,” in
2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 261–265.

[21] F.-R. Stöter, A. Liutkus, and N. Ito, “The 2018 signal
separation evaluation campaign,” in International Con-
ference on Latent Variable Analysis and Signal Sepa-
ration. Springer, 2018, pp. 293–305.

[22] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji,
“Open-Unmix - A Reference Implementation for
Music Source Separation,” Journal of Open Source
Software, vol. 4, no. 41, p. 1667, Sep. 2019. [Online].
Available: https://hal.inria.fr/hal-02293689

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

198


