EXPLAINING PERCEIVED EMOTION PREDICTIONS IN MUSIC:
AN ATTENTIVE APPROACH

Sanga Chaki'

Pranjal Doshi?

Sourangshu Bhattacharya?

Priyadarshi Patnaik?
I Advanced Technology Development Centre, IIT Kharagpur, India
2 Department of Computer Science and Engineering, IIT Kharagpur, India
3 Department of Humanities and Social Sciences, IIT Kharagpur, India

s.chaki27@gmail.com,

ABSTRACT

Dynamic prediction of perceived emotions of music is a
challenging problem with interesting applications. Utiliza-
tion of relevant context in audio sequence is essential for
effective prediction. Existing methods have used LSTMs
with modest success. In this work we describe three atten-
tive LSTM based approaches for dynamic emotion predic-
tion from music clips. We validate our models through ex-
tensive experimentation on standard dataset annotated with
arousal-valence values in continuous time, and choose the
best performer. We find that the LSTM based attention
models perform better than the state of the art transformers
for the dynamic emotion prediction task, both in terms of
R? and Kendall-7 metrics. We explore individual smaller
feature sets in search of a more effective one and to under-
stand how different features contribute to perceived emo-
tion. The spectral features are found to perform at par
with the generic ComPare feature set [1]. Through atten-
tion map analysis we visualize how attention is distributed
over music clips’ frames for emotion prediction. It is ob-
served that the models attend to frames which contribute to
changes in reported arousal-valence values and chroma to
produce better emotion predictions, effectively capturing
long-term dependencies.

1. INTRODUCTION

Automatic determination of perceived emotion in music
is an active and major area of focus for the music infor-
mation retrieval (MIR) community. The aim of dynamic
perceived emotion prediction task is to output a sequence
of time-synchronized arousal-valence labels when a music
clip is given as input. It finds varied applications in the
domains of personalized and/or generalized music recom-
mendations, organizing music databases, automatic music
creation, mood based music search etc. This task is chal-
lenging because: 1) perceived emotion might depend on
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the inherent relationship between different frames of mu-
sic, distributed over time, and 2) emotion perception is in-
herently subjective in nature, highly contextual and per-
sonal. Thus, it is understandable that the emotions related
to music are a time-continuous process, where the context
of the sequential music frames play an immense role on the
associated emotion. Relating this to the machine learning
perspective, one can discern the need of context sensitive
models like recurrent neural networks (RNNs) for the task
at hand. In this study, we use attention mechanism with
a deep RNN-LSTMs (Long Short Term Memory) and the
Transformer [2], to predict the perceived emotion in each
defined time frame of music continuously. We compare
our approach with recent works [3] using only LSTM. We
also attempt to understand the importance of types of fea-
tures contributing to dynamic perceived emotion. Lastly,
attention is visualized with the help of attention map analy-
sis. The following are the major contributions of this work:
1) The LSTM based attention models are found to perform
better than the state of the art Transformers for the dynamic
emotion prediction task. 2) Spectral features are found to
perform at par with the generic ComPare feature set [1].
3) Attention maps are interpreted to observe that the atten-
tion models are able to focus on relevant music frames for
dynamic emotion prediction task.

This paper is organized as follows. In section 2, rel-
evant literature regarding music emotion recognition and
attention is reviewed. Section 3 provides details of the at-
tention based models and Transformer used in this work.
All the experiments carried out and the observations are
reported in section 4. Finally, the conclusions drawn from
the present study are detailed in section 5.

2. RELATED WORK
2.1 Music Emotion Recognition

In the past, most music emotion prediction systems used
features of timbre, pitch, MFCCs and/or lyrics and applied
to classifiers like SVMs [4]. Current state-of-the-art meth-
ods for music emotion prediction are mostly based on deep
neural networks like RNN-LSTMs. Coutinho et al. [5]
proposed the use of this model for this task. Weninger
et al. [3,6,7] used RNN-LSTM networks successfully to
perform continuous time music emotion regression, using
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a modified cost function, on the 1000 Songs for Emotional
Analysis of Music dataset [8]. Giamusso et al. [9] used neu-
ral networks to predict playlist emotions based on lyrics.
Fan et al. [10] performed ranking based emotion recogni-
tion from experimental music. Delbouys et al. [11] used
LSTM and ConvNet models on the Million Song Dataset
[12] for audio and lyrics based bimodal music emotion de-
tection.

2.2 Emotion Representation

Over the years, Discrete and Dimensional models of emo-
tion representation have been used in MIR. Studies using
discrete model either tag their musical data with single [13]
or cluster [14] of simple tags. In dimensional models like
Russel’s Circumplex model [15], emotion is mapped into a
2-D plane, spanned by two axes denoting arousal and va-
lence. Using this well known and satisfyingly exhaustive
emotion representation, the problem of emotion recogni-
tion/prediction is turned into a two dimensional regression
problem [16].

2.3 Attention in MIR tasks

Recently, attention mechanism and Transformer models
have found application in a wide range of MIR tasks, with
success. Balke et al. [17] used a soft-attention mechanism
on input of synthesized piano data for audio sheet music
retrieval. Their results indicate that attention increases the
robustness of the retrieval system by focusing on differ-
ent parts of the input representation based on the tempo
of the audio. The improved results led them to argue for
the potential of attention models as a very general tool for
many MIR tasks. Gururani et al. [18] explored an attention
mechanism for handling weakly labeled data for multi-
label instrument recognition. Their results show that in-
corporating attention leads to overall improvement in clas-
sification accuracy metrics and enables models to attend
to specific time segments in the audio relevant to each in-
strument label leading to interpretable results. Donahue et
al. [19] used the Transformer architecture to improve per-
formance for the task of generating multi-instrumental mu-
sic scores. Chen et al. [20] proposed the Harmony Trans-
former, a multi-task music harmony analysis model aim-
ing to improve chord recognition. Park et al. [21] utilized
a bi-directional Transformer for chord recognition (BTC)
which showed competitive performance. Through atten-
tion map, they visualized how attention was performed,
and it was observed that the model was able to divide seg-
ments of chords by utilizing adaptive receptive field of the
attention mechanism and capture long-term dependencies.
These and other works have explored various feature sets
like CQT (in [21]), Chroma (in [20]), along with other
standard feature sets [1] (in [3]). These recent successes
in varied MIR tasks in terms of model accuracy and in-
terpretability, motivated us to apply the same in the music
emotion regression task. To the best of our knowledge, nei-
ther attention models nor Transformers have been applied
before to the task under examination.
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3. ATTENTION BASED MODELS FOR
EMOTION PREDICTION IN MUSIC

3.1 Attention Model (AT)

In the past, traditional LSTM-RNN approach has provided
good results in music emotion regression [3]. In this work
we propose the use of attention mechanism for dynamic
emotion prediction in music. According to the atfention
model [22], to compute each output of a encoder-decoder
architecture, a distinct context vector is used, which is a
function of all the hidden states at the encoder side and
not just the last one. The encoder encodes the input into
a set of hidden states and attention is applied on them to
produce target arousal and valence values over fixed length
segments or time frames of the music audio signal. The
encoder reads the input sequence x = (z1,x9,...,27),
which is a sequence of vectors, and produces the hidden
states (hi, ho, ..., hr), using some RNN approach. In this
work LSTM is used. In traditional attention mechanism
[22], the whole set of hidden states (hq, ha,...,hr) are
available to compute the context vectors. Each time, the
context vector c¢; is calculated as a weighted sum of all
the hidden states. Let the output be y = (y1,y2,...,y7).
For the current problem, y can be defined as set of arousal
or valence values associated with each music time frame.
The #" output, y;, will be a function g() of a) the present
hidden state A, b) the previous output y;_1, ¢) the unique
context vector ¢y, as given by equation 1.

Py, y2s - ye—1,%) = g(he, ye—1, ) (1)

The unique context vector c; depends on the sequence
of annotations (hi,hso,...,hr), and is computed as a
weighted sum of these annotations h;, as given in equa-

tion 2. T
Ct = E Ottjhj
Jj=1

So, the model at time ¢, attends to each h; correspond-
ing to each of the inputs, with a weight of c;. To obtain
each weight o for each output 3, the alignment between
the corresponding h; and each of 11; need to be calculated,
where 1 < j < T'. So, the alignment model, when attend-
ing to h;, is given by equation 3.

etj = a(ht,l,hj),l <3< (t — 1)

@

3

This alignment is the measure of how well the inputs
around position j and the output at position ¢ match. Then,
each of these scores e;; are used to calculate the attention
weights for each h; as given in equation 4.

B exp(et;)
ey
> k=1 €zp(etk)

So, for each output, the context vector will attend or fo-
cus on those parts of the entire input sequence, which
are more relevant for that particular output, by assign-
ing higher weights to the associated encoder-side hidden
states, using an alignment model. These models are re-
ferred to as the AT models from hereon. The naming con-
vention of the models is the acronym AT for attention, fol-
lowed by the hidden layer dimensions.

“
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Table 1: Model Selection for Dynamic Arousal Prediction

Model Parameter Search (Layer Size) Best Model | R% | Ta | MAE,4
Baseline [3] 400 - 0.60 | 0.14 0.11
LSTM 128, 300, 400, 512,
(Single Layer) 700, 1024, 2048 1024 0.73 1 0.12 0.12
LSTM (700_128), (700_400),
(Multi Layer) (2048_1024), (2048_1024_700) (700_128) 1 0.69 1 0.20 | 0.12
AT 32, 64, 128, 300, 400,
(Single Layer) 512,700, 1024, 2048 300 0.75 | 0.15 0.13
AT (300_128), (400_128), (1024_400),
(Multi Layer) (2048_1024), (2048_1024_512) (2048_1024) | 0.78 | 024 0.1
. BAT 400, 1024, 2048 1024 0.55 | 0.04 0.12
(Single Layer)
BAT (300_128), (400_128), (1024_400),
(Multi Layer) | (1024_512), (2048_1024), (2048_1024_512) (2048.1024) | 0.58 | 0.06 0.12
Transformer 1-Layer, 2-Layer, 4-Layer 2-Layer 0.64 | 0.61 0.27

Table 2: Model Selection for Dynamic Valence Prediction

Model Parameter Search (Layer Size) Best Model R%, Tv | MAEy
Baseline [3] 400 - 0.29 | 0.08 0.16
LSTM 128, 300, 400, 512,
(Single Layer) 700, 1024, 2048 700 0.39 | 0.10 0.15
LSTM (700_128), (700_400), (2048_1024) | 0.29 | 0.17 0.15
(Multi Layer) (2048_1024), (2048_1024_700)
AT 32, 64, 128, 300, 400, 2048
(Single Layer) 512,700, 1024, 2048 400 0.53 1 008 0.16
AT (300_128), (400_128), (1024_400),
(Multi Layer) (2048_1024), (2048_1024_512) (300_128) | 0.511 0.04 | 0.16
. BAT 400, 1024, 2048 2048 0.16 | 0.13 0.15
(Single Layer)
BAT (300_128), (400_128), (1024_400),
(Multi Layer) | (1024_512), (2048_1024), (2048_1024_512) (400_128) ) 0.211 0.16 0.14
Transformer 1-Layer, 2-Layer, 4-Layer 1-Layer 0.12 ] 0.11 0.10

3.2 Backward Attention Model (BAT)

A modified form of the traditional attention mechanism
[22] is also used in the current work, called Backward At-
tention (BAT) models. In these models, for emotion pre-
diction at each t*" time frame, attention is distributed only
among hy, hidden states, where, 1 < k < (¢t — 1).

3.3 Transformers

The transformer architecture as proposed in Vaswani et.
al. [2] is used in this work, with changes in the number
of encoder side layers, as appropriate for the experiments.
Attention is calculated as in equation 5.
) QKT
Attention(Q, K, V) = softmax
(Q? I ) f ( \/@
where, (), K and V' are matrices representing the set of
queries, keys and values respectively and dy, is the key di-
mension.

oo

4. EXPERIMENTS
4.1 Data Description and Experimental Setup

We use the 1000 Songs for Emotional Analysis of Music
dataset [8] for all experiments. Of the thousand clips,the
dataset provides arousal and valence annotations for only
744 clips, which are used as ground truth values. Accord-
ing to the dataset manual [8], arousal-valence continuous
annotations for each song (second 15-45), with 2Hz sam-
pling frequency are available in the dataset. We define each
non-overlapping 500ms of the clips as one music frame.
Thus, the last 30s or the last 61 frames of each clip are
used for this work, since only those 61 emotion (arousal-
valence) tags are available. 10-fold cross validation was
used on the training and test sets. We used the Mean
squared error (MSE) as the loss function. RMSProp, with
the default learning rate of 0.001 was used for optimizing
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Figure 1: Dynamic Emotion Predictions for Clip 584

the loss with a batch size 20, and maximum 50 epochs.
An early stopping strategy is also used, if validation error
shows no improvement over 10~* after 5 epochs, process-
ing is stopped. Sequences are presented in random order
during training. All hyper-parameters not explicitly men-
tioned here are left to their default values as in Tensorflow
1.14. The feature sets used for different experiments are
described below.

4.1.1 ComPare Feature Set

The 2013 Computational Paralinguistics Evaluation (Com-
ParE) tasks featureset [1], containing 6670 features is used
for all experiments in sections 4.2 and 4.4. TUM’s open-
source openSMILE feature extractor [23] is used to extract
the ComParE featureset for each frame of each clip. Stan-
dard normalization was performed on the extracted feature
values before the experiments. So, each clip is charac-
terised by 61 feature vectors, each of size 6670.

4.1.2 Other Feature Sets

In experiments reported in section 4.3, subsets of the
Compare feature set [1] and some other features are ex-
plored. These features extracted using Librosa [24] are de-
tailed here. The Chroma(STFT+CQT) features [24] con-
sist of chroma values derived using both STFT analy-
sis and constant-Q transform (CQT) analysis implemen-
tations. The CQT on Audio clip features [24] are derived
from the core Spectrogram operations of Librosa [24] suit-
able for pitch-based signal analysis. The Spectral Fea-
tures [24] denote the distributions of energy over a set of
frequencies and are very important in many MIR anal-
ysis techniques. These consist of: Chroma(24), CENs
(12) MFCC (20), RMS (1), Mel-scaled spectrogram (128),
spectral centroid (1), spectral bandwidth (1), spectral con-
trast (7), spectral flatness (1), spectral roll-off (1), zero
crossing rate (1). All clips were re-sampled to 44100 Hz
before feature extraction. All features were extracted for
non-overlapping frames of 500 ms each, corresponding to
the available arousal-valence labels of the dataset.
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Figure 2: Emotion Error Histograms over Validation Set

4.1.3 Metrics

The metrics used for reporting the results are Coefficient of
determination (R?), average Kendall’s 7 per song (7)and
mean absolute error (MAE). The determination coefficient
(R?) is a key output of regression analysis, which pro-
vides a measure of how well observed outcomes are repli-
cated by the model, based on the proportion of total vari-
ation of outcomes explained by the model. It can vary
between O and 1. If a data set has n values marked
(y1...yn), and each associated with a predicted value
(fi.--fn). So, R? is defined as R? = 1 — 33« where,

tot
SS’I‘ES = Zz (y’t - fz)2 and SStot = Zz (yl - @)2’ given
Yy = %Z?zl y;. Kendall’s 7 per song (7) is a mea-
sure of how well the emotional profile of each song is
captured by the regressor, as opposed to overall correla-
tion. It measures the correspondence between two rank-
ings. Values close to 1 indicate strong agreement, val-
ues close to -1 indicate strong disagreement. It is de-

fined 7 = \/(P+Q+];";Q(P+Q+U) where, P is the number

of concordant pairs, () the number of discordant pairs, T’
the number of ties only in target set (y1...yn), and U
the number of ties only in predicted set (f; ... f,). The
mean absolute error (MAE) is given for reference. In the
next section, we report the results of applying the proposed
model for dynamic music emotion regression.

Baseline: It has been shown by Weninger et. al. [3, 6]
that LSTMs can be used to produce good performance in
emotion prediction, using the ComParE featureset. We
try to reproduce their results using single layer LSTM-
RNNs with hidden layer size of 400 units. These results
are considered as Baseline in this work and are reported in
the "Baseline" annotated rows of Table 1 and Table 2 for
arousal and valence respectively.

4.2 Experiment 1: Model Selection

In the first set of experiments, we aim to find the best model
for dynamic arousal and valence prediction, among the

Table 3: Feature Sets for Arousal Prediction

Features Used # Features | Best Model RZA Ta | MAE
Chroma(STFT+CQT) 24 AT_64 0.15 | 0.04 0.19
CQT on Audio clip 252 AT_64 0.45 | 0.06 0.17
Chroma+CQT 276 AT_64 0.57 | 0.07 0.14
Spectral Features 197 AT_64 0.70 | 0.03 0.12

Table 4: Feature Sets for Valence Prediction

Features Used # Features | Best Model R%, Tv MAEvy
Chroma(STFT+CQT) 24 AT_64 0.01 | 0.002 0.09
CQT on Audio clip 252 AT_64 0.07 | 0.01 0.17
Chroma+CQT 276 AT_64 0.17 | 0.06 0.14
Spectral Features 197 AT_128 0.35 | 0.07 0.16

ones proposed in section 3. Accordingly, the models with
attention (AT, BAT, Transformers) and without attention
(LSTM) are executed with varying layer sizes and layer
numbers. The findings for arousal and valence are reported
in Table 1 and Table 2 respectively. For dynamic arousal
prediction (Table 1) using the ComPare feature set [1] (sec
4.1.1), the best result is obtained with the multi-layer atten-
tion model AT_2048_1024. Comparable result is also ob-
tained with single-layer attention model A7_300. The best
model for dynamic valence prediction (Table 2) is found
to be the single-layer attention model AT_400. Compara-
ble result is also obtained with multi-layer attention model
AT _300_128.

The following are observed from this experiment: a)
The best prediction performances reported in this section
are better than that reported by the baseline methods (sec
4.1.3). b) Among all the experiments conducted, AT mod-
els fare best in dynamic arousal-valence prediction using
the full ComPare feature set [1]. c) The best single and
multi layer AT models’ performances are comparable. d)
Performance for arousal prediction (R?4 and 7 4) in general
is much better than valence (R%, and Ty ) - across all mod-
els tested. Though performance with respect to M AFE are
comparable.

In the following subsections, we demonstrate an illus-
trative example of dynamic emotion prediction using a clip
chosen at random, followed by an error analysis of the pre-
dictions by the best proposed models, over the validation
set clips.

4.2.1 Illustrative examples

In this section, we demonstrate an illustrative example
of dynamic emotion prediction pattern, with respect to
ground truth (sec 4.1) and baseline (sec 4.1.3), using a clip
chosen at random from the dataset [8]. The best models,
AT_2048_1024 for arousal and AT_400 for valence, ob-
tained in section 4.2 are used for dynamic (per 500 ms)
arousal and valence prediction of music clip 584.mp3. This
is presented in Figure 1. Figure la and Figure 1b denote
the time varying arousal and valence predictions respec-
tively. In the figures, X-axis denote the time (in seconds),
and the Y-axis denote arousal and valence values respec-
tively. It is seen that the proposed best models follow the
pattern of reported emotions more closely than baseline
model.
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4.2.2 Errors Analysis

In this section we aim to observe patterns and biases in the
best proposed models’ (sec 4.1) emotion predictions, with
respect to the baseline (sec 4.1.3). The respective predic-
tions are utilized to group the validation set clips into error
bins for this study. These are shown as histograms in figure
2. The X-axis denote the error bins of the models over the
validation set clips. The Y-axis denote the number of clips
of the validation set, which fall into each error bin. Com-
paring Figure 2a and Figure 2c, it can be seen that, for the
proposed model, the number of clips with higher values of
errors are less, in case of arousal. In case of valence, for the
proposed model, almost all the clips are grouped into the
error bins < 0.05 (Figure 2b). Whereas for the baseline
model ((Figure 2d)), a significant number of clips across
bins are present.

4.3 Experiment 2: Exploring Other Feature Sets

In section 4.2, all the experiments use the full ComPare
feature set [1]. Though it performs well in dynamic emo-
tion prediction in music, it might be noted that it is generic,
not music specific. It is large, which causes models to have
large number of parameters. Also, there might be other
relevant features, which might be used for this task, eg.
Constant Q Transform features. In this section, we ex-
plore some smaller feature sets detailed in section 4.1.2,
which might possibly produce similar or better results,
over the same dataset [8], with the additional benefit of
being smaller in size.

Single layer AT models were used to train on these new
feature sets, since, it was observed in section 4.2 that they
perform best and at par with multi layer models for emo-
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tion prediction. The results are presented in Table 3 and
Table 4 for arousal and valence respectively. For arousal
(Table 3), it is observed that AT_64 performs well, when
using the Spectral Features set, with a R% comparable
to the best model AT_2048_1024 using full ComPare [1]
feature set. It is evident that Chroma features alone have
negligible contribution in arousal prediction. CQT set per-
forms moderately. For valence prediction (Table 4) also,
Spectral features set performs best among all. CQT set
does not contribute much to valence prediction. Thus, we
conclude that there might be a possibility of a smaller fea-
tureset for emotion prediction.

4.4 Attention Maps for Emotion Prediction

Attention maps demonstrate the relative importance of
layer activations at different 2D spatial locations with re-
spect to arousal and valence predictions. In this section,
the best AT and BAT models are used to generate the atten-
tion maps for both arousal and valence, for some clips cho-
sen at random from the dataset [8], presented in Figure 3
and Figure 6. These maps provide information about those
frames of the clip, which are attended to during emotion
prediction. This in turn can yield valuable insights into
specific audio features of those frames, conducive to cer-
tain emotion perception. For all the maps, X-axis signifies
the attention points, which are the 500 ms frames of the
clip the model attends to. The Y-axis signifies the predic-
tion points, the clip’s progression through time. It is to be
noted that these 61 frames in the maps, correspond to the
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last 30 seconds of each clip, as per the dataset [8]. So, the
s frame of a clip, is actually the (15 + £51)"" second of
the entire 45 second clip. The vertical bars on the right of
each attention map give the attention weight values present
in each map. The observations are discussed in the follow-
ing subsections.

4.4.1 Attention Maps Using AT models

The attention maps for arousal and valence prediction,
generated using AT_2048_1024 and AT_400, for clips
128.mp3, 171.mp3, 206.mp3, and 978.mp3 from the
dataset [8] are presented in Figure 3. Figure 3a and
Figure 3b demonstrates the attention maps for arousal and
valence prediction in clip 206.mp3 . As evident from the
figure 3a, the model attends mostly to the clip frames 20-
22,26-28, and then again frames between 43-44, 49, 53-54
and 58 to predict arousal. From figure 3b, it is observed
that the model attends to the frames 1-4, 6, 9, 12-13, 17,
20-21, 40-41, 49-50 and 59-61 to predict valence. Simi-
lar observations can be made about the other clips as well
from Figure 3.

Observations: For arousal prediction, the model at-
tends to comparatively fewer frames of the clip. These
attended frames are observed to occur around 10 seconds
(20 frames) after the clip has started. It can be concluded
that the arousal generated in the later part of the music clip
plays a significant role in determining the arousal percep-
tion of the entire clip. The attended frames have arousal
ratings which are approximately average of all the arousal
ratings for a particular clip. On the other hand, for valence
prediction, attention is distributed across the clip, when-
ever there is perceptible change in valence ratings. Thus it
can be concluded that reports of valence depends on mo-
mentary perception. Even small changes are registered.
The attended frames have quite varied valence rating val-
ues within a particular clip.
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For further investigation, we juxtapose our findings with
a) The dynamic arousal and valence ratings provided by
the dataset [8] - ground truth, given in Figure 4, and b)
Chromagrams of the clips obtained using Librosa [24],
presented in Figure 5. In each line graph of Figure 4, the
X-axis denotes time frames, and Y-axis denotes the arousal
and valence values.

It is to be noted here that the clips 206 and 978 are so

chosen that they have significantly different arousal and
valence ground truth values. In clip 206, the arousal val-
ues are lesser than the valence values. In clip 978, the re-
ported arousal values are greater than the valence values.
The blue and green lines denote arousal and valence re-
spectively, the red dots highlight the time frames attended
to by the AT models, as evident from Figure 3. In each
subplot of Figure 5, the X-axis denotes time (in seconds),
and the Y-axis denotes the Chroma. The vertical bars indi-
cate the intensities of the Chroma. Figure 5a demonstrates
the chromagram for clip 206.mp3.
Observations: For arousal prediction, the model attends
on those frames with stable presence of higher notes (eg.
A, B). For valence prediction, model attends all over the
chroma bins, specially when there is a change in notes
in the chroma sequence of the clip. Similar observations
might be made from the other chromagrams as well.

4.4.2 Attention Maps using BAT models

The attention maps generated using the BAT models,
BAT_2048_1024 for arousal are presented in Figure 6.
Figure 6a gives the attention map for arousal prediction in
clip 60.mp3 of the dataset [8]. As evident from the figure,
the attention of the model shifts continuously throughout
the clip, as it progresses in time, though Segments 11-12
receive maximum attention overall. Similar trends are ob-
served in Figure 6¢ as well, which represents the map for
valence prediction for the same clip. Initially, the first few
segments are attended to. As the clip progresses in time,
the attention is shifted to later segments, with segments
18-19 and 29-30 being more prominent. As the clip pro-
gresses, the attention to initial segments reduces, rendering
the lower right triangular region of the maps devoid of any
attention traces.

5. CONCLUSION

We demonstrate that the state of the art models for
continuous-time emotion prediction perform modestly,
thus emphasizing the need for further research in this area.
We have proposed an attentive LSTM based model which
improves the state of the art performance significantly, on
standard benchmark dataset with standard metrics. Fur-
ther, we observe that a reduced, music-specific feature set
achieves similar performance to the new state of the art
model on arousal prediction, leading to much smaller mod-
els. Finally, we analyse attention maps for the full attention
model to conclude that the model indeed attends to criti-
cal portions of the music in order to predict the dynamic
emotions. We also observe that the nature of attention is
different in case of arousal and valence prediction tasks.
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