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ABSTRACT

Audio alignment is a fundamental preprocessing step in
many MIR pipelines. For two audio clips with M and N
frames, respectively, the most popular approach, dynamic
time warping (DTW), has O(MN) requirements in both
memory and computation, which is prohibitive for frame-
level alignments at reasonable rates. To address this, a va-
riety of memory efficient algorithms exist to approximate
the optimal alignment under the DTW cost. To our knowl-
edge, however, no exact algorithms exist that are guaran-
teed to break the quadratic memory barrier. In this work,
we present a divide and conquer algorithm that computes
the exact globally optimal DTW alignment using O(M+N)
memory. Its runtime is still O(MN), trading off memory for
a 2x increase in computation. However, the algorithm can
be parallelized up to a factor of min(M, N) with the same
memory constraints, so it can still run more efficiently than
the textbook version with an adequate GPU. We use our
algorithm to compute exact alignments on a collection of
orchestral music, which we use as ground truth to bench-
mark the alignment accuracy of several popular approxi-
mate alignment schemes at scales that were not previously
possible.

1. INTRODUCTION
The go-to algorithm for computing alignments between
two audio clips is Dynamic Time Warping (DTW) [1, 2],
and DTW and its variants have seen wide application in
music processing applications [3]. However, the textbook
version of exact DTW has quadratic memory constraints.
While some MIR applications, such as cover song identi-
fication, can get away with coarse, beat-synchronous fea-
tures [4] to remain in a low memory regime, other applica-
tions may require finer scale features and can quickly ex-
plode in memory requirements. For instance, in orchestral
music, onsets are weak, so one must often revert to frame-
level features for satisfactory alignments. Singing voices
also present unique challenges in this regard [5], and both
stringed instruments and singing voices have precise, ex-
pressive attacks at sub-beat scales.
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In this work, we present a simple divide and conquer
variant of DTW to compute a globally optimal align-
ment between two audio sequences with linear memory.
Our contributions are as theoretical as they are practical;
though there are many approximate algorithms that work
well in practice (Section 2), we are not aware of any other
linear algorithms for DTW with this guarantee. A related
advantage is that there are no approximation parameters to
tune; there is only one exact cost (with some caveats on
numerical precision in Section 4.2).

Once we establish the algorithm, we present an experi-
ment on a hand-curated collection of classical music (Sec-
tion 4). Since our memory only scales linearly with a small
factor (Section 4.3), we are able to run it on longer pieces,
enabling us to evaluate the precision of approximation al-
gorithms at scales not previously possible.

2. BACKGROUND

2.1 The Textbook DTW Algorithm

We now briefly review the standard DTW algorithm for
context. Given a (possibly multivariate) time seriesX with
M points and a time series Y with N points, there is a
notion of allowable matchings that preserve the time or-
der, known as a time-ordered correspondence, or “warping
path.” A warping path W , is a correspondence between
X and Y 1 with K ordered tuples of indices of X and
Y so that (assuming 0-indexing) W1 = (0, 0), WK =
(M − 1, N − 1), andWi−Wi−1 ∈ {(0, 1), (1, 0), (1, 1)}.
In other words, matched points between time series must
always stay still or advance by at most one along each, and
at least one must move forward.

Given a cost measure between the ith element Xi in the
first time series and the jth element Yj in the second time
series, CX,Y (i, j), then an “optimal” or “exact” solution to
the Dynamic Time Warping problem is a warping pathW∗
that minimizes the sum∑

k

CX,Y (W∗k (1),W∗k (2)) (1)

We’ll refer to an optimal path as W∗ and the optimal
cost asDX,Y (M,N). It is possible to compute theW∗ and
DX,Y (M,N) using a well-established dynamic program-
ming approach, which is also shared among edit distance

1 A correspondence C between two indexing sets I and J is a subset
of the cartesian product IxJ so that every element of I is contained in at
least one element of C and every element of J is contained in at least one
element of C
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algorithms such as Smith Waterman [6]. In particular, if
DX,Y (i, j) refers to the optimal cost of aligning the first i
points of X to the first j points of Y , then the following
recurrence holds for i, j ≥ 2

DX,Y (i, j) = min


DX,Y (i, j − 1) LEFT
DX,Y (i− 1, j) UP

DX,Y (i− 1, j − 1) DIAG

+CX,Y (i, j)

(2)
the boundary conditions are set as

DX,Y (0, j) =

j∑
k=0

CX,Y (0, k), DX,Y (i, 0) =

i∑
k=0

CX,Y (k, 0)

(3)
After filling in the first row and column by Equation 3, it

is possible to compute all values ofDX,Y (i, j) by applying
Equation 2 from left to right, row by row. After process-
ing all MN pairs of subsets in this fashion, DX,Y (M,N)
contains the optimal cost.

At this point in the algorithm, we merely have a cost,
not an optimal warping path that realizes this cost. But if
we store a second matrix P (i, j) which remembers one of
the three “backpointers” LEFT, RIGHT, and UP that real-
ized the minimum cost at that cell, then we can “backtrace”
by following these arrows back from (M,N) to (1, 1) to
figure out the elements of an optimalW in between.

2.2 Variants And DTW Algorithms in MIR

There are countless works that incorporate and expand on
DTW, so we constrain our focus to approaches and conven-
tions that apply to music processing [3], with a particular
focus on techniques that accelerate the algorithm.

There is theory to suggest that in general, O(N2)
computation will always be the worst-case for optimal
DTW [7], so many settle for approximate solutions. The
so-called “Itakura Parallelogram” [8] and “Sakoe-Chiba
Band” [2] were early fixed global alignment restrictions
proposed to reduce memory and computation. More adap-
tive algorithms have also been used to approximate the
DTW alignment on audio streams. One popular such ex-
ample is a recursive multiresolution algorithm known as
“FastDTW” [9], which has been used to synchronize or-
chestral music at large scales [10,11]. The algorithm com-
putes the warping path of lower resolutions versions of the
time series, and then it recursively constrains alignments
at finer scales to lie within some band of the lower resolu-
tion path. It is guaranteed to have worst case O(M + N)
run-time and memory consumption. A similar algorithm,
known as “Memory-Restricted MultiScale DTW” (MrMs-
DTW) [11] was devised to have constant memory usage,
where performance degrades gracefully with a decreasing
constant memory, and this technique has proved useful in
MIR synchronization applications to pedagogy [12]. We
compare to both of these algorithms in Section 4.

Beyond this, researchers have cut down on memory
with approximate algorithms that use overlapping blocks
[13] and which greedily expand cells to evaluate [14],
though, like all of the approximations we’ve mentioned
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Figure 1. A “linear systolic” array for computing the DTW
cost. Arrows show dependencies. All elements along a
diagonal can be computed in parallel if the diagonals are
processed in order from the lower left (dark) to the upper
right (light).

so far, they have no worst-case approximation guarantees.
The authors of [15] and [16], on the other hand, present
some of the only algorithms with worst case guarantees
for DTW cost in Euclidean spaces. They achieve linearith-
mic runtime complexity, with a runtime proportional to the
geometric complexity of the time series and inversely pro-
portional to the approximation ratio. There are also several
exact algorithms in the literature that use parallel archi-
tectures both for DTW [17] and for the related problem
Smith-Waterman scoring between gene sequences [18] to
speed up computation. We draw on these algorithms in our
design in Section 3.1. However, they were designed simply
to compute costs/scores, not to extract alignments, so we
must build on this work to extract alignments (Section 3.2).

The closest work in spirit to ours is an algorithm for
finding the longest common subsequence between strings
[19], which also uses a divide and conquer scheme for sub-
problems that overlap on O(M) cells, yielding an algo-
rithm of O(MN) time complexity and O(M + N) space
complexity like ours. However, it does not guarantee a
globally optimal solution in the context of DTW [20].

3. OUR ALGORITHM

3.1 Computing the Cost (DiagDTW)

The backbone of our algorithm relies on a different order of
filling in sub-problems of the alignment, the hardware im-
plementation of which is an instance of a "linear systolic
array" in computer architecture [17, 18]. This part is not
yet novel, but it is crucial to our approach, so we review
it here. Rather than processing the cells of DX,Y matrix
row by row, as in the textbook version, it is also possible to
satisfy dependencies needed to complete the recurrences in
Equation 2 while filling inDX,Y along diagonals. Figure 1
shows the idea. If the diagonals are processed in order from
lower left to upper right, then it follows that all elements
on a single diagonal dk can be computed in parallel from
two previous adjacent diagonals dk−1 and dk−2. Then, to
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Figure 2. Choosing a pivot for the divide and conquer al-
gorithm. At least one element (i, j) on the optimal warping
pathW∗ resides on one of three central diagonals that over-
lap from forward and backward computation done halfway,
and this element is used to recursively split computation of
other warping path points into two halves.

move to the next diagonal, the three diagonal buffers cir-
cularly shift; dk becomes dk−1, dk−1 becomes dk−2, and
the previous dk−2 can be reused as the new as dk. Since
each diagonal has a max length of min(M,N), this means
that one only needs a memory of 3min(M,N) to maintain
such a system of circularly shifting buffers 2 ; one never
needs to store all of D in memory to compute the optimal
cost. Once the algorithm has completed, the optimal cost
can be read off as the only element in the last buffer.

Algorithm 1 Diagonal DTW
1: procedure DIAGDTW(X,Y,CX,Y , kstop) . Time

series X and Y with M and N points, a cost CX,Y

between them, and the diagonal on which to stop
2: d0 ← CX,Y (0, 0)
3: d1[← [CX,Y (1, 0) + d0[0], CX,Y (0, 1) + d0[0]]
4: d2 ← []
5: for k = 2 :kstop do
6: Update all elements in d2 based on d0 and d1
7: d0, d1, d2 ← d1, d2, d0 . Circularly shift
8: end for
9: return d0, d1, d2

10: end procedure

Algorithm 1 shows a sketch of the process. We refer
to this algorithm as DiagDTW, and we have implemented
it on the GPU using CUDA. For reasons that will become
clear in Section 3.2, we take as a parameter 2 ≤ kstop
≤ M + N − 1 on which to stop the computation, and we
return the states of all three diagonals at that point.

3.2 Extracting Alignment

The linear systolic array provides a way to compute cost,
but if we insist on only remembering the most three recent
diagonals of backpointers, then there is no obvious way to

2 Ignoring the cost of storing features for the moment

Algorithm 2 Divide And Conquer Linear Memory Dy-
namic Time Warping (linmdtw)

1: procedure LINMDTW(X,Y,CX,Y ,m) . Time series
X and Y with M and N points, cost CX,Y between
them, and a minimum dimension m

2: if M < m or N < m then
return DTW(X,Y,CX,Y ) . Bruteforce path

3: end if
4: K ←M +N − 1 . Number of diagonals
5: kstop← dK/2e . Halfway point
6: df0, df1, df2 ← DiagDTW(X,Y,CX,Y , kstop)
7: if K is even then
8: kstop← kstop +1
9: end if

10: XR ← reverse(X), YR ← reverse(Y )
11: db0, db1, db2 ← DiagDTW(XR, YR, CX,Y , kstop)

. CX,Y (dfk) is all costs along the kth forward diag
12: d0 ← df0 + reverse(db2)− CX,Y (df0)
13: d1 ← df1 + reverse(db1)− CX,Y (df1)
14: d2 ← df2 + reverse(db0)− CX,Y (df2)
15: (i, j)← argmin index in d0, d1, d2
16: Now recursively compute other points onW∗
17: LPath← linmdtw(X(1, 2, ..i), Y (1, 2, ..j), C,m)
18: RPath ← linmdtw(X(i, i + 1, ..M), Y (j, j +

1, ..N), C,m)
19: return LPath + RPath(2, 3, ...) . Don’t double count

common point on overlapping sub-paths
20: end procedure

recover all of the backpointers to reconstruct an optimal
warping path under O(M + N) memory constraints. In-
stead, we make the following two observations, which we
use to build a different algorithm from standard backtrac-
ing which works in a memory-restricted setting:

Lemma 1. For any warping pathW and any adjacent set
of 3 diagonals, at least one element of W is incident on
one of the three diagonals.

This follows directly from the definition of a warping
path in Section 2.1. We also have the following observation

Lemma 2. Let W∗ be an optimal warping path and
(i, j) ∈ W∗, and let XR and YR be the time series X
and Y in reverse order, respectively. Then the cost of the
warping pathW∗ can be broken into three parts as follows

CX,Y (i, j)+CXR,YR
(M − i+1, N − j+1)−DX,Y (i, j)

(4)

This is depicted by the overlapping boxes in Figure 2.
In other words, the total cost is the optimal cost of aligning
the first half of the path from (0, 0) up to and including
(i, j), plus the optimal cost of aligning second half of the
path from (i, j) up to and including (M−1, N−1), minus
the distance from Xi to Yj (so we don’t double count that
distance where they overlap). This follows from the fact
that warping paths must start and end at the beginning and
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end of each time series (so each sub-path is forced to touch
(i, j)), and the fact that reversing both time series has no
effect on the optimal cost. This is similar to the observation
used in MrMsDTW to break up computation into smaller
parts [11].

Now we are ready to present the divide and con-
quer algorithm to compute an optimal warping path W∗.
Lemma 1 and Lemma 2 together imply that if we trace the
first half of the diagonals in a forward direction and the
second half of the diagonals in the reverse direction and
add them up pointwise where they meet at the center, sub-
tracting off the distance at those points, then at least one
element (i, j) on the three diagonals will contain the opti-
mal cost C(M,N). Furthermore, since this cost occurs on
the optimal path, it will by definition be the minimum cost
over all pointwise sums. Therefore, to find a point towards
the center ofW∗, we simply do the following

1. Run Algorithm 1 halfway in the forward direction,
starting at the beginning

2. Run Algorithm 1 halfway in the reverse direction,
starting at the end

3. Perform the sums in Equation 4 where they overlap

4. Take the indices (i, j) of the value that achieves
the minimum over all three diagonals (breaking ties
arbitrarily, the result of which we explore in Sec-
tion 4.2)

.
We refer to (i, j) as the “pivot” at this step, and we are

guaranteed that (i, j) resides on W∗. At this point, we
divide the problem in half at the pivot and find two more
points on the warping path to the left and right, which is
the recursive step. Algorithm 2 summarizes this process.

Because Algorithm 2 calls DiagDTW as a subroutine
and DiagDTW uses 3min(M,N) memory, Algorithm 2
also uses at most 3min(M,N) memory. What is slightly
less obvious, but still fairly straightforward to show, is that
a serial version of the algorithm takes O(MN) time. To
see this, parameterize the diagonal by a variable x, where
x = 0 at the center of the central diagonal, then the total
area of the sub-block to the left of the chosen pivot and to
the right of the chosen pivot is bounded from above by the
following sum of two products

A(x) =

(
M

2
+ x+ 1

)(
N

2
− x+ 1

)
(5)

+

(
N

2
+ x+ 1

)(
M

2
− x+ 1

)
(6)

Then, A′(x) = −4x, and A′′(x) = −4, so a global
maximum occurs at x = 0, for an area of A(0) =
M2N2/2 + M + N . In other words, ignoring the edge
effects M +N due to the overlap, at most half of the total
cells are processed across the two halves of each recursive
split. This leads to the recurrenceMN(1+ 1

2+
1
4+

1
8+...),

which is bounded from above by 2MN . To understand the

Figure 3. The distribution of lengths of our orchestral
pieces in the short collection and long collection.

edge effects, we note the following: since the number of
diagonals, M + N − 1, can be subdivided log2(M + N)
times, this leads to a bound of (M +N) log2(M +N), for
a total worst-case cost of

2MN + (M +N) log2(M +N) (7)

However, the 2MN term will usually swamp the (M +
N) log2(M +N), unless one of M or N is very small (e.g
M = 1, in which case it’s simply subdividing an interval
of length N repeatedly log2(N) times). In practice, we
parallelize the DiagDTW step on a GPU, so the algorithm
runs faster than this. We also keep track of the number of
cells processed, and we assume 2MN to indicate progress
of the the algorithm to the user.

Finally, to save the overhead of initiating too many
small GPU alignments, we break off the recursion when
the sub-blocks get small enough (Line 2, Algorithm 2).
In practice, if either length of of the subdivided time se-
ries goes below 500, we use the textbook DTW algorithm
to complete the alignment, which uses an insignificant
amount of computation and memory at that scale.

4. EXPERIMENTS

Now that the theory for our algorithm has been established,
we apply it to align real audio data. We created a dataset
with 100 pairs of mostly orchestral pieces, where each pair
is performed under different conductors. All of the per-
formances can be found on Youtube, and we provide code
to automatically download them for reproducibility 3 . We
do not have access to human annotated alignments, but
since we can compute exact costs with linear memory,
we can use our exact paths to assess the precision of ap-
proximate algorithms at very large scales to get an idea of
how they perform in that regime. To that end, we split
our dataset into two parts. The first 50 pairs are “shorter”
pieces that can be handled (albeit sometimes slowly) by the
textbook CPU DTW algorithm. The second set are pieces
that would quickly use up all memory with the textbook
algorithm on a personal computer, including many pieces
around an hour or longer. Figure 3 shows the distribution
of the lengths of pieces in both sets.

4.1 Features

So far, our discussion has assumed that we had access to
some distance function DX,Y between time series X and

3 If any links go down, the code is robust to that and will simply skip
those examples
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Table 1. Memory requirements of the dynamic programming accumulated cost cells for different algorithms on some of the
pieces in our dataset. DTW refers to the naive algorithm, while FastDTW refers to the algorithm in [9] using a band width
of δ = 30. The memory requirements for MrMsDTW for 105 and 107 constant cells is 391KB and 38Mb, respectively

Piece Version 1 Version 2 DTW FastDTW Ours
Vivaldi Spring Abbado (188 sec) Gunzenhauser (209 sec) 277 MB 3.86 MB 194 KB
Candide Overture Bernstein (268 sec) Dudamel (279 sec) 527 MB 5.5 MB 270 KB
Beethoven. Symph. No.5 Thielemann (445 sec) Bernstein (514 sec) 1.58 GB 9.12 MB 448 KB
Schumann - Symph. No. 3 Bernstein (2124 sec) Muti (2199 sec) 23.2 GB 36.9 MB 1.77 MB
Stravinsky The Rite of Spring Rattle (2053 sec) Bernstein (2082 sec) 29.4 GB 42.1 MB 2.02 MB
Tchaikovsky Symph. No. 4 Bernstein (2645 sec) Rozhdestve.. (2530 sec) 46.1 GB 51.9 MB 2.48 MB
Shostakovich: Symph. No. 11 Søndergård (3647 sec) Nelsons (3765 sec) 94.6 GB 74.8 MB 3.6 MB
Verdi Requiem Bychkov (4983 sec) Solti (5042 sec) 173 GB 102 MB 4.9 MB
Wagner - Das Rheingold Kuhn (8799 sec) Solti (8759 sec) 542 GB 180 MB 8.6 MB

Y . We now finally describe two different features sets that
allow us to compute distances for synchronization, which
we use in our experiments. The first set of features are
the so-called “decaying locally adaptive normalized C0”
(DLNC0) features [21], which are popular for fine scale
alignments 4 . The second set of features are referred to as
“mfcc-mod” features, which consist of a large number of
MFCC coefficients, throwing away the lower order ones to
control for loudness. These features were shown to work
well at precisely capturing human annotations [22].

For both feature sets, we sampled audio at 22050hz,
and we used a hop size of 512 between feature frames.
This corresponds to about 43 frames per second of reso-
lution. For the DLNC0 features, we used librosa’s imple-
mentation of the CQT with default parameters as a starting
point [23]. The DLNC0 features were concatenated to a
0.1 factor of CENS features to improve stability in steady-
state regions, as suggested in [21]. For the mfcc-mod co-
efficients, we used an fft-length of 2048 and computed 120
“HTK” coefficients, leaving the first 20 out. Although [21]
recommends using cosine distance for the DNLC0 com-
ponent, we found lower discrepancies using the Euclidean
distances as our measure across the board on all of our fea-
tures.

4.2 Numerical Precision / Tie Breaking

Since our algorithm is on the GPU, we revert to 32-bit
computations, and there is a worry that numerical preci-
sion could cause discrepancies, especially since the num-
bers along warping paths are summed together in a differ-
ent order in our algorithm, and ties are broken at a different
stage. To rule this out as a source of error when comparing
approximation precisions, we compare our GPU answer to
the brute force 32-bit CPU answer on the textbook algo-
rithm. We also compare two different tie breaking rules
on 64-bit CPU brute force implementations; one where di-
agonal takes precedence over left, and one the other way
around. Ultimately, though there are discrepancies, they
are negligible compared to errors in approximation, as
shown in Figure 4. And the 32-bit versus 64-bit appears
to make little difference at these scales.

4 Unlike [10], we do not use a multiscale version of DLNC0, since we
are assessing approximations of exact alignments at a single scale

4.3 Memory Requirements
We compare our alignments to both FastDTW [9] with a
band δ = 30 and to MrMsDTW using a constant amount
of 105 and 107 cells. To make Equation 4 more conve-
nient to compute in our implementation, we store the dis-
tances between corresponding points on the three diago-
nals in addition to the cumulative sums, so we end up us-
ing 6min(M,N) storage instead of 3min(M,N) storage.
Still, we note that 107 cells is an order of magnitude be-
yond this requirement, while 105 cells is on the shorter
end of what our algorithm needs on the short dataset,
so these are two good reference points for MrMsDTW.
To compare memory with FastDTW, we use the equation
from [9] which states that the total worst-case space com-
plexity for storing the cells is N(4δ + 5) values. Hence,
though FastDTW also has linear memory requirements,
it has a larger constant factor, particularly for reasonable
band sizes (δ = 30 is less than a second of wiggle room).
Table 1 shows the memory requirements for storing the
cells for different algorithms with variable memory, as-
suming 32-bit precision (4 bytes per cell). This neglects
the memory for storing the warping path, which is negli-
gible compared to the cost of storing the accumulated cost
cells, and it also neglects the memory requirements of stor-
ing features, which is a separate issue mostly independent
of the algorithms, since these are all run offline. Still, the
memory differences are striking.

4.4 Results
We now examine the results closely. We computed the
alignment discrepancies between two warping paths W1

andW2 as follows. For every element (i, j) ∈ W1, we re-
port the error as min |j − k| for (i, k) ∈ W2. To maintain
symmetry, we also add an analogously defined column er-
ror to our distributions for every element. Figure 4 shows
the approximation error distributions for different algo-
rithms on all of the shorter pieces, including tie breaking
discrepancies on the exact algorithm (Section 4.2), while
Figure 5 shows approximation errors on all of the longer
pieces. In each figure for each pairwise comparison, there
are four different color dots per piece that indicate the pro-
portion of correspondences (i, j) that fall below the align-
ment discrepancies (23 ms, 47 ms, 510ms, and 1 second).
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Figure 4. Shorter pieces alignment errors.

Figure 5. Longer pieces alignment errors.

Overall, we find that the approximation algorithms often
fail to agree at very fine scales, but they usually agree to
within a second of audio, which is particularly impressive
on the long pieces. And unsurprisingly, MrMsDTW per-
forms better with more memory.

In addition to approximation errors, we also show the
discrepancy between the mfcc-mod and DLNC0 feature
sets for reference. Interestingly, their discrepancy is sim-
ilar to that of approximation with MrMsDTW, suggesting
that feature design is at least as important as a good ap-
proximation. However, under a good feature choice at a
fine scale, it is likely that our exact algorithm will give the
most desirable alignment.

Finally, to empirically validate the correctness of our
computational complexity bound in Section 3.2, we report
the ratio of cells processed to total cells in the full accumu-
lated cost matrix in Figure 6 across all pieces, and we find
that the ratio is very close to 2 in all cases, as predicted.
Only under very extreme warps away from the center of
the matrix would one expect this to be much smaller.

Figure 6. In most cases, our algorithm uses close to the
factor of 2 bound we established for computation in Sec-
tion 3.2

5. SOFTWARE
Since some of the details of linmdtw (Algorithm 2) are
tricky to implement correctly, and in the spirit of repro-
ducibility [24], we have provided our CPU and GPU (py-
cuda) implementations of linmdtw, FastDTW, and MrMs-
Dtw in an open source package at https://github.
com/ctralie/linmdtw, which can be installed sim-
ply with “pip install linmdtw”. We have documentation
and Jupyter notebooks on the repo for example usage. The
software will try run CUDA by default, but if it fails, it will
fall back to the CPU implementation. There is also code
to replicate the experiments in Section 4 by downloading
URLs from Youtube, robustly skipping those no longer
available. Finally, we used the Rubberband Library [25]
and implemented the refinement technique of Ewert (Sec-
tion 4 of [26]) to stretch audio to conform to warping paths.

6. DISCUSSION
In this paper, we presented a novel exact memory efficient
algorithm for DTW. In addition establishing this new algo-
rithm and proving its correctness, we empirically bench-
marked a couple of popular approximation algorithms for
DTW alignment in MIR at larger scales than had ever been
shown. We found that these algorithms still have fairly
good performance with reference to an exact alignment
even on longer pieces. MrMsDTW is particularly fast com-
putationally, so this suggests that it’s good as a first stop in
many cases, though there are outliers, and there are always
quality gains to be had for an exact algorithm.

Furthermore, though the focus of this paper was on
memory constraints, our vanilla GPU implementation also
led to speed increases over the textbook CPU version and
had similar but slightly slower runtimes than FastDTW.
However, a better GPU implementation would treat global
and local memory with more care, along with addressing
myriad other issues [27], so we do not believe this algo-
rithm has yet reached its full computational potential.

There are also other computational problems with very
similar dynamic programming design DTW, such as edit
distance and Smith Waterman [6], which could benefit
from the ability to align large sequences under memory re-
strictions. Even approximate DTW algorithms may benefit
from tricks in this paper.
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