
GENERATING MUSIC WITH A SELF-CORRECTING
NON-CHRONOLOGICAL AUTOREGRESSIVE MODEL

Wayne Chi Prachi Kumar Suri Yaddanapudi
Rahul Suresh Umut Isik

Amazon Web Services
waynchi@amazon.com, kumprach@amazon.com, yaddas@amazon.com

surerahu@amazon.com, umutisik@amazon.com

ABSTRACT

We describe a novel approach for generating music using a
self-correcting, non-chronological, autoregressive model.
We represent music as a sequence of edit events, each of
which denotes either the addition or removal of a note—
even a note previously generated by the model. During
inference, we generate one edit event at a time using di-
rect ancestral sampling. Our approach allows the model
to fix previous mistakes such as incorrectly sampled notes
and prevent accumulation of errors which autoregressive
models are prone to have. Another benefit is a finer, note-
by-note control during human and AI collaborative com-
position. We show through quantitative metrics and human
survey evaluation that our approach generates better results
than orderless NADE and Gibbs sampling approaches.

1. INTRODUCTION

There have been two primary approaches to generating
music with deep neural network-based generative models.
In the first class, music generation is essentially treated as
an image generation problem [1, 2]. In the second class,
music generation is treated as a musical time series gener-
ation problem, analogous to autoregressive language mod-
eling [3–7]. The human process of music composition,
however, is often non-chronological. Notes can be filled in
anytime throughout the music piece to create new chords
and melodies, add harmony, or embellish existing motifs.

In this work, we propose ES-Net 1 , a method that uses
elements from both the image-based and time series gen-
eration techniques. Our method operates on piano roll
images with a 2D convolutional neural network, but au-
toregressively adds or removes notes one at a time in an
arbitrary, non-chronological order. We model the condi-

1 Code: https://git.io/esnet
Samples: https://git.io/esnet-samples

c© Wayne Chi, Prachi Kumar, Suri Yaddanapudi, Rahul
Suresh, Umut Isik. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Wayne Chi, Prachi
Kumar, Suri Yaddanapudi, Rahul Suresh, Umut Isik, “Generating Mu-
sic with a Self-Correcting Non-Chronological Autoregressive Model”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

tional distribution of note add or remove events given pre-
existing notes. After sampling from the distribution, we
re-input the resulting piano roll into the model to get the
distribution of the next add and remove events. From a
probabilistic point of view, this corresponds to consider-
ing each piano roll as obtained from a randomly ordered
sequence of add and remove events and autoregressively
modeling the distribution of such sequences of events.

Poor samples due to accumulation of errors is a well-
documented problem with autoregressive models [8–11],
especially when directly sampling from the conditional
distribution (i.e. direct ancestral sampling). While other
sampling techniques such as Gibbs sampling [12] can be
used to bypass this problem, we show that direct ancestral
sampling is sufficient if the data representation includes re-
moval of past samples. This allows the model to detect
previous mistakes and fix them.

Our primary use case is melody assistance for users
generating musical compositions. Users can feed in a
melody as a conditional input and have the model gener-
ate musical accompaniments as well as fix any off-beat or
out of tune inputs. One distinct advantage of our approach
is that it allows note-by-note control for users. A user can
undo and redo the generation of individual notes or explic-
itly add and remove individual notes to collaborate with
the model and guide the music composition process. Thus,
this approach allows users to have a finer degree of con-
trol during sampling and better promotes human and AI
collaboration.

The remainder of the paper is organized as follows. In
Section 2 we discuss related works. In Section 3 we show
how to model a distribution of musical pieces using a new
representation of music. In Section 4 we discuss our train-
ing procedure. In Section 5 we discuss our sampling pro-
cedure. In Section 6 we provide empirical results in the
form of quantitative metrics and human evaluation com-
pared against other approaches. Finally, in Section 7 and 8
we describe future work and conclusions.

2. RELATED WORK

Following the introduction of NADE [13, 14] and order-
less NADE [15] there have been several works built upon
the concept of ordered and unordered autoregressive mod-
els. Coconet—the algorithm behind Google’s Bach Doo-

893

dle 2 —is a machine learning model that also uses a convo-
lutional model to generate music by adding counterpoints
to existing user input [12]. The difference with this work
is that Coconet’s inference uses Gibbs sampling rather than
direct ancestral sampling. DeepBach [16] generates Bach
style chorales using pseudo-Gibbs sampling. PixelCNN
[17] models an image autoregressively and generates pix-
els one by one in a pre-specified order while our generation
is unordered. In a NLP setting, recent works also explore
non left-to-right ordering [18, 19] and deletion [20].

In general, there is a rich history of using deep learn-
ing to generate music [21]. Many of them use autore-
gressive based approaches. RNN-RBM models tempo-
ral dependencies to generate polyphonic music in a single
track [22]. Hierararchical RNNs have been used to encode
different features of pop music [23]. LSTMs were able
to successfully model and generate music as well [24].
Music Transformer is able to capture and generate mu-
sic with long term structure and motifs [3]. So far, these
approaches have been mostly chronological while ours is
non-chronological. While GAN-based approaches clearly
differ from ours, these methods have shown the ability
to generate high quality music. MuseGAN is a GAN-
based approach for multi-track piano roll generation [1].
MidiNet uses a CNN-based GAN to generate music [2]. C-
RNN-GAN generates music using a RNN based architec-
ture with adversarial training [25]. SeqGAN use GANs for
sequence generation and apply it to music generation [26]
.

3. PROBLEM DEFINITION

We consider a musical piece x ∈ X as a point in
{0, 1}T×P where T is the number of time steps and P is
the number of note pitches. This represents a simplified pi-
ano roll (PR)—a discrete representation of music as an im-
age matrix across pitch and time. There exists a probability
density function pPR(x) on {0, 1}T×P of musical pieces.
Note in particular that this does not model velocity and
that notes adjacent in time are treated as one continuous
held note; we discuss ways to represent velocity and re-
peated notes in Section 7. Instead of modeling pPR(x) on
{0, 1}T×P directly, we model the distributions as pES(s)
on the set of edit sequences (ES). An edit sequence of
length M is a tuple of M -many edit events where an edit
event is a matrix e(t,p) ∈ {0, 1}T×P that has one entry
equal to one, and all other entries equal to zero (i.e. a one-
hot matrix). We denote the set of all edit events by E and
of edit sequences of lengthM by EM . The following maps
edit sequences to piano rolls:

π :
∞⋃
M=1

EM → {0, 1}T×P (1)

π(e1, . . . , eM) =
M∑
i=1

ei (mod 2). (2)

2 https://magenta.tensorflow.org/coconet

where (2) allows edit events to handle either note addition
or removal depending on if a previous edit event exists at
the same time and pitch.

Figure 1. Mapping from an edit sequence (left) of length
M to a piano roll (right). Each slice in an edit sequence is
the addition or removal of a note.

The mapping between the two joint probability distri-
butions is as follows:

pPR(x) = pPR({(t1, p1), . . . , (tN , pN)})

=
∞∑

s∈π−1(x)

pES(s)
(3)

where N is the number of notes in the piano roll, (ti, pi) is
the time and pitch of a note or edit event, π−1(x) is the in-
verse image set of π(x), and s is a sequence of edit events
(t1, p1) . . . (tM , pM) where M ≥ N . We can further fac-
torize pES(s) as:

pES(s) = pES
(
(t1, p1), . . . , (tM , pM)

)
=

M∏
i=1

pES
(
(ti, pi)|(t1, p1), . . . , (ti−1, pi−1)

) (4)

We assume that pES((ti, pi)|(t1, p1), . . . , (ti−1, pi−1)) is
ordering invariant (i.e. the ordering of edit events in an
edit sequence does not affect the resulting piano roll).

Our goal is to train a model to map the distribution of
edit sequences pES(s). By sampling autoregressively from
pES(s), we will generate a sequence of edit events that can
be mapped back into a piano roll representation and then
converted to MIDI.

3.1 Orderless NADE

We compare our approach to orderless NADE which gen-
erates music by randomly choosing an ordering and sam-
pling notes one by one until termination. We can rep-
resent the iterative notewise addition of orderless NADE
as a special case of edit sequences where edit events can
only represent note addition. Let us call this distribution
pO-NADE(x). Since notes are only added, M = N for
unconditioned generation; thus, there is a finite set of or-
derings and we can factorize pO-NADE(x) as:

∑
σ∈SN

N∏
i=1

pO-NADE
(
(tσ(i), pσ(i))|

(tσ(1), pσ(1)), ..., (tσ(i−1), pσ(i−1))
)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

894

where SN is the set of all permutations {1, 2, ..., N} →
{1, 2, ..., N}. This factorization is equivalent to orderless
NADE [15]. In practice, the orderless NADE approach
leads to poorer musical samples due to accumulation of
errors which we confirm in Section 6.

4. TRAINING

Given an input piano roll, I, and target piano roll, T ,
we train our model to output the conditional probabili-
ties pES((ti, pi)|(t1, p1), . . . , (ti−1, pi−1)) of the next edit
event in edit sequences that can recreate the target from the
input piano roll. For each piano roll in the training set, we
generate the input piano roll by (a) masking existing ran-
dom notes and (b) adding extraneous random notes to the
target piano roll. We train the model to recreate T from
I; augmentation (a) trains the model to add notes and (b)
trains the model to remove notes. For each target piano
roll, we generate multiple augmented inputs with varying
number of notes masked and added, in order to train the
model to handle varying number of differences between
the input and target. We find that masking between 0 to 100
percent of all existing notes and adding 0 to 1.5 percent of
all possible extraneous notes gives us the best results.

Our goal is to have the model output the conditional
probabilities for the next edit event. Since we assume or-
dering invariance in (4), we can also assume that every note
difference between I and T—whether it requires the addi-
tion or removal of a note—is equally likely to be the next
edit event. Thus, we model the distribution of edit events
for the next step as the uniform distribution U supported on
the symmetric difference I∆T between I and T (i.e the
exclusive or of each note between I and T).

We use the Kullback-Liebler divergence between U and
the model’s output distribution as the loss function:

L(I, T , P) = DKL(P ‖ U), (5)

where P is the softmax over the model’s logits at each time
and pitch. Normally, binary cross-entropy loss—where the
label is the next note—would be used, but since we assume
ordering invariance in (4), the next note is equally likely to
be any of the future notes. Therefore, training with (5) is
equivalent to training many times where the label is ran-
domly chosen from future notes.

4.1 Model

We train a model based on the U-Net architecture [27].
This choice is not critical as our approach should general-
ize to other CNN architectures. We describe our approach
for reproducibility. Our U-Net contains five downsampling
blocks and five upsampling blocks. In each block there
contains a batch normalization layer, two 2D convolutional
layers each with a 3x3 kernel, a max pooling layer, and a
drop out layer with a 0.5 dropout rate. We begin with 32
filters. We double the number of filters after each down-
sampling block and halve the number of filters after each
upsampling block. We use the Adam optimizer [28] with
a learning rate of 0.001. We use RELU for our activation

function, except for the final layer where we output a linear
activation at each time and pitch. Finally, we apply soft-
max over the logits when calculating the loss and during
sampling.

5. INFERENCE

We sample from the model’s output probabilities through
direct ancestral sampling. We feed the input melody to the
model, sample from the softmax over all times and pitches
to determine the next edit event, modify the input melody
based on that edit event, and then feed that melody back
into the model. We repeat this over multiple iterations and
condition each time on our previous predictions. Since we
do not differentiate between adding and removing notes
during training, the sampling process is the same for any
type of edit event. We allow users to restrict the number of
notes to remove; this prevents the model from completely
overwriting the original input. We also allow users to con-
trol how many sampling iterations are performed. Lastly,
we allow the user to change the temperature during sam-
pling. By changing the shape of the distribution, users can
make compositions more or less “creative” at the risk of
lowering quality. We surface these hyperparameters to al-
low users to more freedom and customizability when gen-
erating music compositions.

6. EMPIRICAL EVALUATION

We compare our approach against orderless NADE and
Gibbs sampling using quantitative metrics and human sur-
vey evaluation. We also describe a notewise approximate
log likelihood calculation for our approach and explain
why log likelihood is not a good metric for comparing
our approach to orderless NADE. We build an orderless
NADE model using the approach described in Section 3.1
and training with only masked notes. We use Coconet [12]
to represent Gibbs sampling. While our main focus is
to only use Coconet for sampling technique comparisons,
there are a few notable differences between Coconet and
our approach. First, Coconet does not explicitly train the
model to remove notes, but notes—including the input—
may be removed during the Gibbs sampling masking pro-
cess; our approach explicitly models note removal. Sec-
ond, Coconet assumes that there are four instruments and
that “each instrument plays exactly one pitch a time” [12];
our approach has no such constraint and can generate mu-
sic across all times and pitches. Third, Coconet trains a
CNN that preserves the same size for each layer; we train
a model based on the U-Net architecture. Since Coconet
is trained on the JSB Chorales dataset, we evaluate our re-
sults and Orderless NADE’s results using the same dataset
and the same train-val-test split in order to provide a fair
comparison. For all other parameters (e.g. temperature),
we maintain identical settings for each approach in order
to benchmark fairly.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

895

Figure 2. Input piano roll (left), target piano roll (middle), and symmetric difference between the input and target piano
rolls (right)

6.1 Data

We use the Infinite Bach dataset 3 and the JSB Chorales
dataset 4 . The JSB Chorales and Infinite Bach datasets
contain MIDI files—382 for JSB Chorales and 498 for In-
finite Bach—of chorales harmonized by J.S. Bach. The
MIDI files in Infinite Bach dataset are generally longer in
duration allowing for approximately three times more sam-
ples overall compared to the JSB Chorales dataset. Since
the Gibbs sampling model is trained on JSB Chorales, we
use the JSB Chorales dataset for benchmarking.

For both datasets, we preprocess the data by: 1) map-
ping MIDI to its piano roll representation using a sixteenth-
note quantization, 2) converting multi-track inputs into a
single track by merging all tracks, and 3) splitting each
MIDI into multiple 2 or 8 bar samples.

6.2 Log Likelihood

We calculate log likelihood using equation (3). Since for
each piano roll x the inverse image π−1(x) is infinite, the
sum cannot be calculated exactly; thus, we calculate an
approximate log likelihood for a subset of all possible edit
sequences in π−1(x). This value lower bounds the true
log likelihood value. We compare this lower bound to the
log likelihood for orderless NADE. Since our method re-
moves notes as well, the proposed model is modeling a
distribution with larger support so we do not expect the
likelihood value of our method to be better than orderless
NADE’s. Our likelihood values show that—in the toy case
when the sum can be sufficiently expanded—the likelihood
lower bound value approaches that of orderless NADE.

Consider a graph where each vertex corresponds to a pi-
ano roll state and each edge corresponds to an edit event. A
path in the graph corresponds to an edit sequence described
in equation (2). As we traverse over a path, we calculate
the log likelihood of the edit sequence corresponding to
that path.

For each input I and target T pairing, we calculate our
log likelihood over multiple levels, traversing over edit se-
quences of length K + 2d at level d. K is the minimum
number of edit events needed to reach the target from the
input. All K edit events are unique along time and pitch.
For level d = 0, there exist K! different edit sequences.

3 https://github.com/jamesrobertlloyd/infinite-bach
4 https://github.com/czhuang/JSB-Chorales-dataset

We calculate the average log likelihood over a randomly
chosen subset of these edit sequences and approximate it
over all K! edit sequences. During the traversal we keep
track of the most probable (time, pitch) predictions that do
not occur in the edit sequences, and add them to a pool
Q. We keep these predictions as they will appear in the
most probable edit sequence paths at level d = 1. For level
d = 1, we traverse down the same paths, but we add two
edit events with the same time and pitch chosen from Q
to the path. This increases the path length to K + 2 and
results in the same target pianoroll since the two new edit
events cancel out. We approximate the log likelihood sum
over all possible edit sequences. We repeat this for each
(time, pitch) pair in Q. This process can be repeated until
level d = D expanding our coverage of the edit sequence
graph along the most probable paths.

We calculate the approximate log likelihood as:

1

K
log

D∑
d=0

∑
Q

(K + 2d)!

2d
1

|S|
∑
s∈S

pES(s)

where S is a random subset ofK+2d length edit sequences
that can transform I to T . 5 As we increase the levels
of our approximation, our log likelihood will converge to-
wards orderless NADE which we see in Table 1 at d = 1.

Since music completion is a task with high uncertainty,
the large number of low probability predictions leads to
underflow issues, which we avoid by using the log-sum-
exp trick. Also, since log likelihood in this case is highly
dependent on the number of notes in a piece, we compute
an approximate notewise log likelihood by dividing the ap-
proximate log likelihood by the minimum number of note
additions and removals needed to reconstruct the target pi-
anoroll. We do not use log likelihood to compare our ap-
proach with Gibbs sampling used in Coconet as they use
framewise log likelihood, which is different than our cal-
culation [12].

6.3 Quantitative Metrics

We calculate several quantitative metrics to compare the
quality of generated music using our approach, orderless
NADE, and Gibbs sampling. For each approach, we gen-
erate 3405 bars of music—the same number of bars in the
5 We divide the K+2d factorial by 2d as we cannot “remove" before

we “add" a note.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

896

Approach Notewise Approximate Log Likelihood

ES-Net -0.635
Orderless NADE -0.558

Table 1. Notewise approximate log likelihood for recon-
structing 10 missing notes from each test sample.

training data—and compare them to the training data. We
generate the music by conditioning on 150 8-bar mono-
phonic inputs. We evaluate on the following metrics de-
signed in [1, 29]:

• PC - Number of unique pitch classes used. Notes
whole octaves apart from each other (e.g. C4 and
C5) belong to the same pitch class.

• P - Number of unique pitches used.

• ISR - In-scale rate which is the proportion of all
notes that lie in C Major 6 .

• PR - Polyphonic rate which is the proportion of
timesteps where the number of pitches being played
is greater than or equal to 4.

We use pypianoroll [29] to calculate these values.

PC P ISR PR

Training Data 6 46 0.541 0.917

ES-Net 6 46 0.540 0.930
Gibbs Sampling 6 46 0.535 0.898
Orderless NADE 8 55 0.559 0.759

Table 2. Quantitative metrics for each approach. Closer
to training data is better. Bold values are best between the
three approaches.

We observe that our approach and the Gibbs sampling
approach both produce music that have similar characteris-
tics to the dataset, while orderless NADE shows less sim-
ilarity to the dataset. As seen in Table 2, our approach is
the closest for all four metrics, with Gibbs sampling tying
for number of unique pitches and pitch classes used.

Bhattacharyya
Kolmogorov-Smirnov

df D p

ES-Net 0.028 46 0.17 0.49
Gibbs Sampling 0.021 46 0.13 0.83
Orderless NADE 0.049 46 0.17 0.49

Table 3. Various metrics for how far pitch appear-
ance frequency is from the training data. Lower is bet-
ter and bolded is best for Bhattacharyya distance. The
Kolmogorov-Smirnov test is unable to show significant
difference between any of the approaches and the training
data.

6 The C-Major scale was chosen arbitrarily.

Figure 3. Frequency of occurrence for each pitch bin.
Each bin is two pitches (i.e. one bin contains both pitch
31 and 32).

In Figure 3, we plot the frequency of pitch values for
each approach and compare with the distribution of pitches
in the training data. We observe that the distribution of
pitches for all three approaches is very similar to that of
the training data. In Table 3, we evaluate the similarity of
each approach’s pitch appearance frequency to the training
data using various metrics. We calculate the Bhattacharyya
distance [30] showing Gibbs sampling as the closest to the
training data and orderless NADE as the furthest from the
training data. We perform Kolmogorov-Smirnov tests and
are unable to show significant differences between each ap-
proach and the training data.

6.4 Human Evaluation

We conducted a human opinion test in order to compare
our approach against orderless NADE and Gibbs sampling.
We generated 8 bar samples with a pitch range from 36 to
81. We assume 4/4 time (i.e. 4 beats per bar) and quantize
to 16 time steps per bar (i.e. 1/16th note). We assume two
notes continuous in time as one note. For orderless NADE,
we sample 400 times to generate samples that approximate
to 4 pitches per time step. Coconet optimizes the num-
ber of iterations it requires. Since our approach allows for
the model to both add and remove notes, there is no fixed
number of iterations to run the model; instead, the model
eventually stabilizes and adds or removes the same set of
notes repeatedly. We sample for 10,000 iterations for our
approach. When conducting the surveys, we chose a large
number of iterations to ensure stabilization; through later
experiments, however, we found that the output almost al-
ways stabilizes before 2000 iterations.

Each survey contained fifteen randomly chosen sets of
comparisons where each set of comparisons contained a
random sample from each of the three approaches. Each
of the samples in each set were randomly ordered. All
three samples in a set were conditioned on the same input
track which was also given to the participant. In order to
simulate real user input, we created input tracks by taking
two bar user inputs from the Bach Doodle Dataset [31]—
a dataset of real user inputs to Coconet and its resulting
composition—and repeated them four times to form eight

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

897

(a) (b) (c)

Figure 4. Human Survey Evaluation Ratings: (a) describes whether users thought a sample improved on the input. (b)
describes user rankings for music quality. (c) describes user rankings for how similar a sample is to real Bach data. Bars
are ordered from left-to-right as ES-Net, Gibbs Sampling, and Orderless NADE.

bars. Bach Doodle ranks their inputs based off of user feed-
back from the resulting Coconet composition; we chose
an equal number of samples randomly from each feedback
level. Each survey contained the same fifteen sets of com-
parisons. These inputs are monophonic (i.e. only one pitch
per time step). For each set of comparisons, users were
asked (a) if each sample improved on the input, (b) to rank
the samples based on music quality, and (c) to rank the
samples based on similarity to music composed by Bach.

We receive a total of 207 ratings for question (a), 211
ratings for question (b), and 213 ratings for question (c). 7

For question (a), we see that all approaches are compara-
ble and each approach almost always improved the input
as seen in Figure 4(a). For questions (b) and (c), we see
in Figures 4(b) and 4(c) that our edit sequence approach
is the best approach while the orderless NADE approach
is the worst. We perform a Kruskal-Wallis H-test across
all ratings for questions (b) and (c). We show that there
is a statistically significant difference (X 2(2) = 64.47,
p < 0.001 for question (a) and X 2(2) = 73.07, p < 0.001
for question (b)) between the three models. We use the
Wilcoxon signed-rank test to conduct a pairwise post-hoc
analysis. We show that there is a statistically significant
difference (p < 0.001 for questions (b) and (c)) between
our approach and both the Gibbs sampling and orderless
NADE approaches.

7. FUTURE WORK

We currently trained on a limited number of datasets, both
of which are based on Bach chorales. There is no reason,
however, that our approach should be limited to any feature
of Bach. By training on other datasets, we will be able to
evaluate how well our approach generalizes.

We show that allowing the model to remove notes in-
creases music quality which we believe is due to the model
correcting its past mistakes. During our training process,
we generate random notes in order to mimic those mis-
takes. Rather than merely mimicking those mistakes, how-
ever, we can generate real mistakes by feeding outputs

7 Some users did not answer all three questions per set of samples.
Partial or incomplete rankings were discarded.

from the model back into itself. We believe that this self-
adversarial training paradigm will allow the model to cap-
ture more realistic sampling mistakes and further improve
performance.

Our current data representation does not convey fea-
tures such as note velocity, repeated notes, or explicit note
duration. These features, however, can add to the technical
and emotive quality of music. We can map these new fea-
tures as additional channels and concatenate this informa-
tion with our existing piano roll. This new data represen-
tation will allow our model to learn from these new feature
dimensions and produce more expressive and technically
challenging music.

An advantage of our algorithm is the ease with which
we can extend our approach to other use cases. For in-
stance, currently our model generates fixed length outputs
depending on the length of the training samples. In this
way, we can extend user melodies up to a fixed length;
however, we never explicitly train our model to extend in-
puts. By augmenting our dataset so that the latter portion
of each sample is masked out, we can explicitly train our
model to extend melodies. Then, during sampling, we can
generate a fixed length output, feed the latter portion of
that output back into the model to generate a new output,
concatenate those two outputs together, and repeat. This
would allow us to extend melody repeatedly rather than up
to a fixed length output.

8. CONCLUSION

We show that by modeling removal of notes, we can train a
model to produce better music by fixing past mistakes and
preventing accumulation of errors. We discuss how our
note-by-note approach allows for a finer degree of control
and better human and AI collaboration. We demonstrate
how to map an edit sequence representation into a piano
roll representation and how we can use that to model a dis-
tribution of musical pieces. We discuss how we train our
model by masking and adding erroneous notes and how we
sample from our model during inference. Finally, we show
through quantitative metrics and human evaluation that our
approach is able to generate musical compositions that are
of better quality than orderless NADE and Gibbs sampling.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

898

9. AUTHOR CONTRIBUTION

Authors Wayne Chi and Prachi Kumar contributed equally
to this work.

10. REFERENCES

[1] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“Musegan: Multi-track sequential generative adversar-
ial networks for symbolic music generation and accom-
paniment,” in Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[2] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “Midinet:
A convolutional generative adversarial network for
symbolic-domain music generation,” arXiv preprint
arXiv:1703.10847, 2017.

[3] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon,
C. Hawthorne, N. Shazeer, A. M. Dai, M. D. Hoffman,
M. Dinculescu, and D. Eck, “Music transformer: Gen-
erating music with long-term structure,” 2018.

[4] R. Child, S. Gray, A. Radford, and I. Sutskever,
“Generating long sequences with sparse transformers,”
arXiv preprint arXiv:1904.10509, 2019.

[5] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and
R. Salakhutdinov, “Transformer-xl: Attentive language
models beyond a fixed-length context,” arXiv preprint
arXiv:1901.02860, 2019.

[6] C. Payne, “Musenet, 2019,” URL https://openai.
com/blog/musenet, 2019.

[7] J. Wu, C. Hu, Y. Wang, X. Hu, and J. Zhu, “A hier-
archical recurrent neural network for symbolic melody
generation,” IEEE Transactions on Cybernetics, 2019.

[8] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer,
“Scheduled sampling for sequence prediction with re-
current neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2015, pp. 1171–1179.

[9] F. Huszár, “How (not) to train your generative model:
Scheduled sampling, likelihood, adversary?” arXiv
preprint arXiv:1511.05101, 2015.

[10] A. M. Lamb, A. G. A. P. Goyal, Y. Zhang, S. Zhang,
A. C. Courville, and Y. Bengio, “Professor forcing:
A new algorithm for training recurrent networks,” in
Advances In Neural Information Processing Systems,
2016, pp. 4601–4609.

[11] A. Venkatraman, M. Hebert, and J. A. Bagnell, “Im-
proving multi-step prediction of learned time series
models,” in Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, 2015.

[12] C.-Z. A. Huang, T. Cooijmans, A. Roberts,
A. Courville, and D. Eck, “Counterpoint by con-
volution,” arXiv preprint arXiv:1903.07227, 2019.

[13] H. Larochelle and I. Murray, “The neural autoregres-
sive distribution estimator,” in Proceedings of the Four-
teenth International Conference on Artificial Intelli-
gence and Statistics, 2011, pp. 29–37.

[14] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and
H. Larochelle, “Neural autoregressive distribution es-
timation,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 7184–7220, 2016.

[15] B. Uria, I. Murray, and H. Larochelle, “A deep and
tractable density estimator,” in International Confer-
ence on Machine Learning, 2014, pp. 467–475.

[16] G. Hadjeres, F. Pachet, and F. Nielsen, “Deepbach:
a steerable model for bach chorales generation, june
2017,” arXiv preprint arXiv:1612.01010.

[17] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu,
“Pixel recurrent neural networks,” arXiv preprint
arXiv:1601.06759, 2016.

[18] M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Inser-
tion transformer: Flexible sequence generation via in-
sertion operations,” arXiv preprint arXiv:1902.03249,
2019.

[19] W. Chan, N. Kitaev, K. Guu, M. Stern, and J. Uszkor-
eit, “Kermit: Generative insertion-based modeling for
sequences,” arXiv preprint arXiv:1906.01604, 2019.

[20] J. Gu, C. Wang, and J. Zhao, “Levenshtein trans-
former,” in Advances in Neural Information Processing
Systems, 2019, pp. 11 181–11 191.

[21] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, “Deep learn-
ing techniques for music generation–a survey,” arXiv
preprint arXiv:1709.01620, 2017.

[22] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent, “High-dimensional sequence transduction,” in
2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2013, pp. 3178–
3182.

[23] H. Chu, R. Urtasun, and S. Fidler, “Song from pi: A
musically plausible network for pop music generation,”
arXiv preprint arXiv:1611.03477, 2016.

[24] B. L. Sturm, J. F. Santos, O. Ben-Tal, and
I. Korshunova, “Music transcription modelling and
composition using deep learning,” arXiv preprint
arXiv:1604.08723, 2016.

[25] O. Mogren, “C-rnn-gan: Continuous recurrent neu-
ral networks with adversarial training,” arXiv preprint
arXiv:1611.09904, 2016.

[26] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Se-
quence generative adversarial nets with policy gradi-
ent,” in Thirty-First AAAI Conference on Artificial In-
telligence, 2017.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

899

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-net:
Convolutional networks for biomedical image seg-
mentation,” in International Conference on Medical
image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[29] H.-W. Dong, W.-Y. Hsiao, and Y.-H. Yang,
“Pypianoroll: Open source python package for
handling multitrack pianoroll,” Proc. ISMIR.
Late-breaking paper;[Online] https://github.
com/salu133445/pypianoroll, 2018.

[30] A. Bhattacharyya, “On a measure of divergence be-
tween two statistical populations defined by their
probability distributions,” Bull. Calcutta Math. Soc.,
vol. 35, pp. 99–109, 1943.

[31] C.-Z. A. Huang, C. Hawthorne, A. Roberts, M. Din-
culescu, J. Wexler, L. Hong, and J. Howcroft, “The
Bach Doodle: Approachable music composition with
machine learning at scale,” in International Society for
Music Information Retrieval (ISMIR), 2019. [Online].
Available: https://goo.gl/magenta/bach-doodle-paper

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

900

