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ABSTRACT

The human response to music combines low-level expecta-
tions that are driven by the perceptual characteristics of au-
dio with high-level expectations from the context and the
listener’s expertise. This paper discusses surprisal based
music representation learning with a hierarchical predic-
tive neural network. In order to inspect the cognitive va-
lidity of the network’s predictions along their time-scales,
we use the network’s prediction error to segment electroen-
cephalograms (EEG) based on the audio signal. For this,
we investigate the unsupervised segmentation of audio and
EEG into events using the NMED-T dataset on passive nat-
ural music listening. The conducted exploratory analysis
of EEG at locations connected to peaks in prediction error
in the network allowed to visualize auditory evoked poten-
tials connected to local and global musical structures. This
indicates the potential of unsupervised predictive learning
with deep neural networks as means to retrieve musical
structure from audio and as a basis to uncover the corre-
sponding cognitive processes in the human brain.

1. INTRODUCTION

Studying the human perception of music has received in-
creased interest in Music Information Retrieval (MIR). As
humans solve tasks such as beat tracking, genre identifica-
tion or musical prediction with ease, many MIR methods
rely on computational models inspired by human percep-
tion. At the same time, studying the brain’s response to
auditory stimuli is still limited by the lack of resources that
map complex musical stimuli to neural processes. Studies
in cognitive neuroscience and brain computer interfacing
(BCI) on auditory evoked brain states require labor inten-
sive manual preparation and often focus on isolating partic-
ular brain responses using sparse stimuli presented individ-
ually [1,2]. While datasets on brain states evoked by natu-
ral music exist, they often lack fine-grained annotations of
the event structure and corresponding neural activity [3-5].
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This entails a demand for efficient and unsupervised map-
ping techniques between natural music and evoked brain
states. Furthermore, there is a need for biologically plausi-
ble and multi-modal models for such mapping, as induced
brain states are a mixture of stimulus-derived and subjec-
tive, cognitive or contextual factors.

We address these challenges with predictive coding, one
of the most dominant theoretical frameworks of human
perception [6, 7]. Predictive coding offers a comprehen-
sive description of how humans parse and predict sounds
and map auditory stimuli to musically meaningful and hi-
erarchically organized units [8]. In predictive coding, the
neural response to music is shaped by hierarchically orga-
nized expectations [7]. This hierarchy of expectations con-
nects predictions about low-level auditory features to more
global context, such as the listener’s musical expertise or
levels of entrainment during listening [8]. The underlying
dependencies between expectancy and uncertainty in pre-
dictive coding are particularly interesting in the context of
music perception, as music perception can be described as
continuously resolving uncertainty and forming new ex-
pectations [9-11]. This is in line with evidence on the
predictive nature of human music perception, especially
within studies on unexpected stimulus deviations and the
influence of the listener’s expectancy on attention and per-
ceptual precision [9, 11].

Predictive coding offers an efficient algorithmic motif
that allows unsupervised learning. Learning in predic-
tive coding systems can be seen as a hierarchy of pre-
dictive modules that form predictions over various tem-
poral scales. These predictions can either be about future
states in the stimulus domain or about the future of inter-
nal states of the systems and are often cast in the context
of Bayesian (i.e. probabilistic) inference [12]. In this hier-
archical generative model of perception, long-term expec-
tations from temporally stable aspects of music, such as
genre or tempo form top-down predictions about the activ-
ity of layers closer to the actual auditory information [8].
By propagating the deviations between predictions and ob-
servations, the generative model and with that the model of
the processed stimulus is updated [7].

Here, we connect predictive coding as a algorithmic
motif for unsupervised stimulus representation with deep
neural networks and recurrent variational inference in or-
der to segment natural music into units that are musically
meaningful. Following the assumption that hierarchical
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predictive coding of music explains a substantial amount of
evoked brain states, we analyse the retrieved musical struc-
ture in terms of the induced neural activity in electroen-
cephalographic signal (EEG). Using the Naturalistic Mu-
sic EEG Dataset—Tempo (NMED-T) of passive listening
to natural music we the demonstrate that the approach al-
lows to locate and visualize event related potentials (ERPs)
on local and global scale [3].

2. RELATED WORK

Within the field of MIR, the capacity of predictive cod-
ing algorithms to compress and represent auditory infor-
mation on the sensory level has been exploited for vari-
ous tasks such as speech re-synthesis or audio compression
since many years [13,14]. The human brain, however, aug-
ments such low-level sensory representations with a hierar-
chy of more abstract, semantic predictions from other brain
areas [7]. This aspect of hierarchical predictive learning
has found traction in the domain of deep neural networks
(DNNps), but so far has been applied mostly to images and
video processing [15, 16]. Furthermore, most popular im-
plementations of deep predictive coding often only rely on
non-linear transformation of the sensory error and not yet
abstract away from pure sensory prediction. Autoregres-
sive modeling of audio has seen tremendous progress in
recent years, with a plethora of models performing tasks
such as sample level audio prediction or speech synthe-
sis, often with impressive results [17-19]. However, such
autoregressive models are computationally expensive and
sample-level models still tend to struggle with incorporat-
ing more abstract and long-term musical features.

2.1 Auditory evoked potentials and musical structure

Recent years have shown a variety of approaches to study-
ing the human brain’s response to auditory stimuli, espe-
cially with functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG). EEG is especially ad-
equate in the context of music due to its higher tempo-
ral resolution. A multitude of auditory features, such as
loudness, frequency, tempo and rhythm have been traced
in EEG recordings of brain activity during music per-
ception [20-23]. Next to these stimulus-derived aspects,
recorded brain activity has further been analysed with re-
spect to more contextual aspects of music perception, such
as the listener’s attention, which is modulated by aspects
such as expertise or engagement [24]. Two extensively
researched aspects of the neural response underlying per-
ception potentials are event-related potentials (ERPs) and
steady-state evoked potentials (SSEPs) [25,26]. ERPs and
SSEPs differ mainly in their temporal scope: While ERPs
are aligned to a single loation (typically the onset of a par-
ticular event), SSEPs show frequency alignment to stimu-
lus periodicity over longer time frames [27]. For ERPs, the
brain response aligned to the event type of interest is anal-
ysed after averaging large amounts of trials [28]. Auditory
event-related potentials (AEPs) are modulated by aspects
such as rhythm, pitch, timbre or the duration of musical

events, all of which play an important role in human audio
segmentation [25,29-33]. Many of these evoked potentials
have been explained in the context of predictive coding as
a mixture of bottom-up and top-down mechanisms that are
modulated both contextual expectations and the auditory
stimulus itself [34, 35]. Similar to ERPs, SSEPs are in-
spected after averaging over many trials, but don’t require
zero valued phase offset between stimulus and response.
Instead, SSEPs characterize periodic mappings between
auditory features and brain response, such as phase lock-
ing to perceived frequencies or loudness envelopes. Both
ERPs and SSEPs can be related to predictive cognitive pro-
cesses aiming at structuring the incoming sensory signal
into meaningful events in a hierarchical fashion [35,36].

3. A HIERARCHICAL PREDICTIVE CODING
MODEL FOR MUSIC

Predictive coding describes hierarchical predictions of sen-
sory states and hidden states of the network across vari-
ous time-scales. Sample based predictions about audio re-
quires a model with high temporal resolution that captures
the causal dependencies between adjacent samples. Thus,
a desired predictive coding model for audio connects low-
dimensional predictions over many time-steps with fine-
grained predictions at the sensory level. Transforming au-
dio features to high-level representations is a complex task,
which is often solved with the non-linear processing found
in DNNs. We approach these requirements with a recurrent
DNN that generates autoregressive predictions based on
long short-term memory (LSTM) [37]. Instead of predict-
ing individual frames, we process mel spectrogram rep-
resentations of audio. The reduced temporal resolution of
spectrograms helps reducing the computational complexity
while still capturing fine-grained auditory information. As
spectrograms extend into time and frequency, we employ
convolutional neural networks (CNNs) to extract features
from the spectrograms.

3.1 Autoregressive predictive coding

In order to enable hierarchical predictions across multi-
ple time-scales, we stack multiple LSTM layers and al-
low each layer to predict the future states of the next lower
layer. In line with Bayesian views on brain function and re-
search on the effectiveness of probabilistic recurrent mod-
elling, we express the current state in each layer as Gaus-
sian prior distributions, parameterized by mean and vari-
ance parameters [12,38]. While the lowest layer predicts
future audio signal, the network’s hidden layers predict
future states of the lower layer’s representations. More
specifically, we first sample the prior distribution of each
layer and transform the resulting activation with a convo-
lutional decoder network. The decoder of the lowest layer
parameterizes the prediction of expected next spectrogram
input window. The decoders in hidden layers output pre-
dictions about the mean and variance parameters of the
next lower layer. In contrast to the related class of recur-
rent variational autoencoders (VAE), we do not employ an
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encoder network that directly transfers observations to a
posterior distribution [39]. Instead, the network processes
only the deviation e; between predicted p; and observed
values o, with a error encoder network:

et =Pt — 0t (n

3.2 Variational inference with deep neural networks

With the previously introduced decoder, error encoder and
recurrence networks, the model can be trained to perform
variational inference by constructing a variational bound
on the data log-likelihood. More specifically, the model
is trained to maximize the evidence for its current inferred
state, the network’s "belief" about what causes an observa-
tion. Mathematically speaking, maximizing the model ev-
idence can be expressed as minimizing the complexity of
the model’s generative model while providing maximally
accurate predictions for future audio inputs. The model
thus reduces the complexity of states with respect to obser-
vations o; and states s; at a discrete time step ¢:

Complexity = Fya, joc, K Lla(silo<o) [p(si]si-1)]

2

Simultaneously, the accuracy of predicted observations
maximized:

Accuracy = Eq(st|ogt)[1np(0t|5t)] 3)

The observations in the lowest (sensory) layer refer to
the observed audio, while observations in the hidden layers
refer to the observed state posteriors in terms of mean and
variance. The model optimizes both terms simultaneously
for all layers. For this the approximate state posteriors
q(s1.rlerr) = Hthl q(st|et—1) are inferred by filtering
past prediction errors {e;}7_,. By selecting a pair of ad-
jacent layers and minimizing the accuracy and complexity
term between them, this structure allows to form predic-
tions that are consistent between layers, i.e. show small or
no top-down prediction error. Such a design prevents er-
ror propagation across many layers in a single step. This
is a potential drawback and could be improved in future it-
erations. Throughout all experiments, we used a network
with three predictive coding layers. We model q(s¢|et—1)
as diagonal Gaussian for all layers with mean and variance
parameterized by a convolutional neural network (CNN)
with two layers of 64 and 128 units each. The convolu-
tional layers were followed by a dense network of 1024,
512 and 256 units respectively.

3.3 Deterministic transitions with a probabilistic step

The LSTM states of the network are conditioned on its
previous states {h;}_;, top-down predictions {e_td;} -,
from the next higher layer as well as the prediction error
of the last outgoing prediction, the bottom-up prediction
error {e_bu;}_;. At each time-step, the bottom-up pre-
diction error is forced to pass a sampling step when up-
dating the prior to the posterior distribution. This means
that any incoming sensory information {e_bu; } must pass
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Figure 1. Transitions in a single layer of the predictive
coding network. The black pathways show transitions in
the lowest layer of the network. Predictions about fu-
ture audio are conditioned on past states and prediction
errors. The blue pathways indicate top-down posterior pre-
dictions, which allow to predict the states of lower layers
in the network in terms of mean and variance parameters.
Multi-step predictions can be generated by updating the re-
current states without sampling new observations.

a stochastic step before being integrated into the determin-
istic memory states {h;}. Figure 1 shows an overview of
the transitions in a single layer and the connection to the
top-down predictive pathway.

3.4 Model training

The model is trained using a timestep-wise variational ev-
idence lower bound (ELBO) that combines the previously
introduced complexity (2) and accuracy (1) terms. Simi-
larly to the objective function in recurrent VAEs [40], the
model maximes the ELBO for the approximate posteriors
in each layer by accumulating evidence over past time-
steps:

ELBO(q

M’ﬂ

(Cutslocn mplorse)]
=1 “

—oq<s,,_1|o§,,,1>[KL[q(stwgn||p<st|st_1>n)

This structure can be viewed as a hierarchical Kalman
filter, making the connection to predictive coding as a
Bayesian update scheme or generalized Kalman filtering
apparent. We used ReLU activations for all CNNs and hy-
perbolic tangent activations for the decoder’s output layer
[41]. In each layer, the prediction error was computed with
respect to positive and negative prediction error. Each layer
was then ReLU activated before propagation to the en-
coder networks. For all presented experiments, we trained
the model to convergence of the input layer reconstruction
loss. For this, we used the Adam optimizer with a learning
rate of 1073 [42]. The KL divergence terms for each layer
were scaled proportionally to the prediction errors. Fur-
thermore, we weighted the reconstruction losses by 2:1:1
for the employed three layer model.
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4. THE NMED-T AND FMA DATASETS

We used the Naturalistic Music EEG Dataset—Tempo
(NMED-T) for the evaluations in all presented experiments
[3]. NMED-T features EEG recordings from 10 commer-
cially available music pieces, with durations between 270
and 300 seconds, spanning 55 to 150 BPM in various gen-
res. 20 participants were allowed to freely and passively
listen to the music, without any additional cognitive load.
We used the provided preprocessed version of the EEG
data at a sampling rate of 125 Hz. For all presented ERP
experiments, we re-referenced the EEG data to the aver-
age of all 125 EEG channels and filtered out background
noise using a Savitzky-Golay filter before averaging the
evoked responses. For network training, we resorted to the
"small" partition of the Free Music Archive (FMA) dataset,
featuring 8000 songs with 30 seconds duration [43]. We
computed magnitude spectrograms for all ten provided au-
dio files of the NMED-T dataset and the FMA audio files
before mapping to the mel scale, resulting in mel spectro-
grams at 125 Hz, equal to the EEG sampling rate. All audio
processing steps were done with the librosa library [44].
We tested different mel spectrogram lengths as inputs to
the lowest network layer and found lengths between 50 and
150 ms to be the sweet spot with low computation time and
without quick overfitting.

5. EXPERIMENTS

For all following experiments, network training was done
first on the FMA dataset followed by a evaluation phase us-
ing the NMED-T stimuli. After training on the FMA audio,
we froze the network weights and processed the NMED-
T audio to generate predictions and corresponding predic-
tion errors. For each processed NMED-T audio stimulus
we extracted both positive (PPE) and negative (NPE) val-
ued prediction errors. In this context, PPEs refer to areas
where the model predictions are lower than the observed
threshold, while NPEs refer to predictions that are higher
than the actual values. Predictions were computed in a sin-
gle pass over each song, i.e. without repeated inference of
the current musical context. However, such "active learn-
ing" or "active inference" schemes could be explored in the
future.

5.1 Deriving segmentation boundaries from
prediction errors

In order to inspect the effect of predictive coding at the
audio level, we first deactivated the recurrent parts of the
lowest layer, forcing the model to express next states as
a function of previous observation and the top-down pre-
diction. For model evaluation, we extracted positive and
negative prediction errors from each layer of the network.
In all layers, we a applied a magnitude threshold to pick
peaks from the continuous error response, followed by a
peak-picking step that ignores repeated error peaks in a
sliding window of fixed size. Both magnitude and win-
dow size could be learned by the network itself, leaving

the room for more complex and self-supervised segmenta-
tion techniques. All presented experiments use the mean of
positive and negative prediction errors, if not further speci-
fied. Figure 2 shows two examples for input and predicted
audio as well as the corresponding prediction errors and
selected peaks. The examples illustrate that autoregressive
predictive coding decorrelates large parts of the processed
audio in the first layer, by reducing the redundancies in the
signal using non-linear weighted predictions based on the
past values. This is in line with the spatial and temporal
whitening effects described by Rao et al. in the context of
center—surround receptive fields in the retina [7]. For the
following experiments, we use these sensory predictions
to derive segmentation boundaries and explore temporally
aligned ERPs in the brain.
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Figure 2. Predicted audio and positive and negative pre-
diction errors in the first predictive coding layer for songs
with a) 55 and b) 108 BPM. The model generates local
predictions about inputs in a sliding window of 50 ms size.
This autoregressive and non-linear process removes tem-
poral redundancy in the residual error response. The bot-
tom rows show the thresholded prediction error and picked
peaks.

Increasing the weight of the prediction errors in the hid-
den layer decreased the error magnitudes. This is expected,
as the network now learns to include more global temporal
context over multiple steps of the lower layer. Ideally, the
network learns to predict the rhythmic and timbral struc-
ture perfectly and successfully suppresses the prediction
error in the first and second layer. If the recurrent parts are
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active in the lowest layer, the long-term temporal depen-
dencies can be memorized in the first layer additionally.
In our experiments we found that (with a fixed weighting
of the prediction errors between layers) deactivating the
recurrence in the lowest layer is essential to learning pre-
dictive representations in the hidden layers. As visible in
Figure 2, the tempo of the song as well as the rhythmic
density have influence on the effectiveness of input decor-
relation in the lowest layer.

5.2 Grand average ERP

To inspect the possibility to detect ERP events based on the
sensory surprise, we extracted the prediction errors from
the lowest predictive coding layer and averaged the EEG
signal over all trials in all songs and subjects. We were able
to derive a total of 242960 trials within 10 songs and 20
subjects using the proposed method. This equates 22140 to
28740 trials per song and between 1108 and 1437 unique
event locations per song.

Figure 3 a) shows the grand average ERP for all ten
songs in the NMED-T dataset at locations of prediction
errors peaks. In comparison to the tempi reported in the
orginal NMED-T paper, we sorted the songs between 83
and 151 BPM using beat tracking in the librosa library.
The difference between our tempo measures and the ones
in the original paper can be explained as being multiples of
each other, e.g. 110 BPM being a multiple of 55 BPM. The
averaged ERP shows an activity peak for positively corre-
lated channels at the predicted event location, followed by
a negative peak around 60 ms after onset. The grand av-
erage ERP further shows two smaller peaks around 120
and 170 ms after onset, indicating the presence of sur-
rounding onsets with variable latency. The reduced magni-
tude of these delayed peaks can be explained by the differ-
ences in tempo between songs.Specifically, the difference
in peak size between activity close to the predicted onsets
and those with greater temporal distance indicates a sep-
aration between tempo-independent components (close to
the prediction error peak) and attenuated tempo-dependent
components. Figure 3 b) shows the grand average ERP in
five positively activated channels, sorted by the prediction
error magnitude. The magnitude of the first evoked peak
after stimulus onset grows proportional with the error mag-
nitude for large error values. For smaller prediction error
values, the response shows larger latency. Peaks with sim-
ilar latency of the evoked activity have magnitudes propor-
tional to the prediction error magnitude. This fits with the
assumption that the grand average ERP shows temporally
variable peaks induced by differences in tempo.

5.3 Evaluating song-level segmentation with low
frequency EEG

Next to inspecting the predicted ERP responses with the
local predictions of the input layer, we want to inspect the
possibility to segment stimuli on the song level with the
model. For this, we repeat the unsupervised training of
the previous experiments, but weight the prediction errors
in all layers equally after pretraining for 100000 updates.
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Figure 3. a) Grand average ERP for all songs in the
NMED-T dataset at locations of prediction errors peaks
generated by the predictive coding network. b) Grand av-
erage ERP in five positively correlated channels for trials
sorted after the prediction error magnitude of the predictive
coding network.

This approach puts more focus on the temporal consistency
of the predictions in the hidden layers. Furthermore, we
train with multi-step predictions of length 8, i.e. predic-
tion errors are generated with respect to 8 future states at
a time. This follows the assumption that both multi-step
predictions and increased weighting of the hidden layer
prediction errors increase the network’s tendency towards
more global predictions. In order to evaluate the ability to
retrieve meaningful musical structure with the network’s
predictions, we extracted the timings of prediction errors
from the lowest predictive coding layer and used them as
starting points of EEG epochs, subsequently averaging the
EEG signal over all epochs within each segmented class.
Following previous work that illustrates differences in beat
processing with SSEPs, we inspect averages of low fre-
quency EEG to detect changes in beat processing or en-
trainment between the segmented classes derived from pre-
diction errors in the predictive coding network [3]. For
this, we use the same epoched data derived from locations
computed in the previous experiments but average over all
epochs within the bounds of each segmented class.

Here, we want to inspect whether changes in network
prediction triggered by peaks in prediction errors show
changes that are detectable with SSEPs. To generate bi-
nary segmentation, we threshold the prediction error like
in the previous steps with a fixed value for each song
and switch between segmentation masks when the posi-
tive error surpasses the negative error and vice versa. Both
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a) SSEPs in low frequency EEG within the segments de-
rived from gated prediction errors of the predictive coding
network. Indicated with dashed lines are multiples of the
song tempo, ranging from 1 to 16 Hz. Differences between
the peaks in the power spectrum of both segments indicate
different rhythmic processing between the two segmented
classes.
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b) Corresponding audio and temporal binary segmentation
of two songs derived from gated prediction errors after
training the proposed network for unsupervised multi-step
prediction. Only the lowest 6 octaves are included for il-
lustration purposes.

Figure 4. Segmented audio and evoked SSEPs in low fre-
quency EEG of the NMED-T dataset.
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down-sampling the inputs or increasing to length of multi-
step predictions leads to more coarse grained segmenta-
tion. We found that using hop lengths up to as much as
16000 successive frames during spectrogram computation
were suited to generate song-level segments while simulta-
neously reducing computation time. Intuitively speaking,
the changes in hidden prediction error magnitude reflect
the "mid-level" surprise of the network, as the pure sen-
sory surprise is largely minimized in the input layer and
the residual errors are further propagated. Future iterations
of the model could use learnable error thresholds for im-
proved and self-supervised segmentation. To help visual-
ize the effect of segmentation we reduced spatial EEG di-
mensionality using Principal Components Analysis (PCA)
before averaging the data and analyzed only the first com-
ponent. Figure 4 a) shows the induced SSEPs in the mag-
nitude of low-frequency EEG for selected songs. Audio
and segmentation boundaries for two of these songs are
displayed in Figure 4 b). Visible are peaks in the low fre-
quency EEG components within all segmented parts that
are aligned with multiples of the song tempo. In most pro-
cessed songs the noticeable magnitude shifts go along with
a stable distribution of the frequencies of evoked peaks, in-
dicating rhythmic differences between the annotated seg-
ments which are embedded into the same global tempo.

6. DISCUSSION

This paper explored deep predictive coding for unsuper-
vised audio representation learning inspired by human cog-
nition. We compared the network’s prediction errors with
evoked potentials in EEG. For this, we related the hierar-
chical predictions of the model on ten naturalistic musical
pieces to onset-aligned evoked potentials captured in EEG.
We derived locations for individual musical events from
the sensory surprise and inspected steady-state evoked
potentials that capture rhythmic differences in the seg-
mented songs. The employed model combines determin-
istic sequential predictions with probabilistic representa-
tions. While the deterministic parts allow to learn regu-
larities over time-scales, the probabilistic elements lessens
overfitting and helped shortening training duration. While
sensory-level predictions can be employed for local event
annotations, the predictions and prediction errors in hidden
layers target higher levels of temporal abstraction.

Our results indicate the usefulness of predictive coding
for the retrieval of events across the local and global struc-
ture of musical works. The model allows to approach audio
segmentation jointly with structuring recorded brain activ-
ity, forming a basis for retrieval of information about cog-
nitive processes in music perception. This offers an appeal-
ing method for researching auditory evoked potentials, as
it eases the mapping between stimulus characteristics and
connected evoked potentials across time-scales. Future im-
provements could enhance the capacity of the model, e.g.
by allowing the model to segment inputs based on learned
error gating.
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