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ABSTRACT

The digitization of the content within musical manuscripts
allows the possibility of preserving, disseminating, and ex-
ploiting that cultural heritage. The automation of this pro-
cess has been object of study for a long time in the field
of Optical Music Recognition (OMR), with a wide vari-
ety of proposed solutions. Currently, there is a tendency to
use machine learning strategies based on neural networks
because of their high performance and flexibility to adapt
to different scenarios by changing only the training data.
However, most of the recent literature addresses only spe-
cific parts of the traditional OMR workflow such as mu-
sic object detection or symbol classification. In this pa-
per, we progress one step further by proposing a full-page
OMR system for Mensural notation scores that consists
of simply two processes, which are enough to extract the
symbolic music information from a full page. More pre-
cisely, our pipeline uses Selectional Auto-Encoders to ex-
tract single staff regions, combined with end-to-end staff-
level recognition based on Convolutional Recurrent Neu-
ral Networks for retrieving the music notation. The results
confirm the adequacy of our method, reporting a success-
ful behavior on two Mensural collections (CAPITAN and
SEILS datasets) with a straightforward implementation.

1. INTRODUCTION

The digitization of the content within documents [1] is a
process that helps to preserve cultural heritage and enables
easier dissemination and knowledge creation. Tradition-
ally, this content digitization is done manually, with an
undeniably high cost that is very prone to introduce mis-
takes as well. In the music context, the development of
Optical Music Recognition (OMR) systems promises to
perform this task automatically with minimum human in-
volvement. Research efforts have promoted the progress
in this field achieving excellent, yet partial results [2–4];
therefore, full digitization of music documents is still to be
studied in practical contexts.
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Recent advances in machine learning enable new ap-
proaches in the OMR field [5]. The use of deep neural net-
works provides novel ways of avoiding complex multi-step
workflows that are considered in legacy OMR research [6].
A successful example of this new trend is the so-called
end-to-end approach, that operates at the staff level; in
other words, a single step that completely processes the
image of a single staff and retrieves the series of symbols
that appear therein [7].

While end-to-end strategies can be used to read a se-
quence of symbols at the staff level, it is still necessary to
previously detect all the staves contained in the documents
as region blocks, for then transcribing the music content.
This staff detection task has been addressed in recent lit-
erature [8, 9]. However, these works only assess staff de-
tection as a computer vision problem—i.e., how accurate
is, in geometric terms, the region extracted, without con-
sidering how useful it is for the subsequent steps. These
partial results are not sufficient to determine with certainty
the goodness of the approaches within a complete OMR
pipeline.

In this work, we carry out a study to determine how the
recent advances in OMR interact with each other. Also, we
eventually offer, for the first time, results that validate that
only two steps—the staff-region detection combined with
an end-to-end method—are sufficient to develop a com-
plete page-level OMR system with excellent recognition
rates through neural networks.

As we will explain later, this approach is successful
if the graphical complexity of the scores follows certain
criteria: single-staff systems with a single voice in each.
That is why our experiments are restricted to Mensural
manuscripts, of great historical interest, where these re-
quirements are common.

2. BACKGROUND

Although the term OMR covers a wide range of
scenarios—different research might be carried out accord-
ing to the notational type or the engraving mechanism of
the manuscripts—there has been a general pipeline that
addresses the challenge through a series of independent
stages that work on different parts of the problem [5].

Traditionally, individual challenges were very com-
plex, so procedures were developed to work on specific
manuscripts [10–13]. However, the systems ended up be-
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Figure 1: Scheme of the considered methodology.

ing very specific, so previous efforts were hardly reused. In
other words, there was little scientific progress in the field.

Recently, the early stages of the process have been re-
formulated as object detection tasks [14], thus bypassing
some of the stages of the traditional workflow. Pacha et al.
[15] provided a baseline for direct music-object detection
in music score images, experimenting with several models
and corpora of different typology.

At the same time, there have been approaches for end-
to-end OMR. Such models perform the complete recog-
nition of musical notation from an image, directly pro-
viding the sequence of music symbols present therein as
output. In addition to high performance, this prevents the
need for the training set to be annotated at the symbol-
level position and post-process strategies that convert the
individually detected elements to the actual music nota-
tion. Concerning this formulation, Pugin [16] pioneered
the end-to-end approach for printed Mensural notation us-
ing Hidden Markov Models (HMM) with the Aruspix sys-
tem. However, although HMMs represent models that fit
perfectly well with the task at issue, other tasks of a sim-
ilar nature, like handwritten text recognition, experienced
a leap in performance using deep neural networks [17]. It
has been demonstrated that neural approaches outperform
those based on HMM for end-to-end OMR as well [7].

To date, however, there is no existing end-to-end ap-
proach that works at the full-page level, but only at the
single-staff level. It is not only a challenge to be solved
in the field of OMR but also in text recognition—a task
that we could consider even simpler. In text recognition,
the end-to-end approaches face the recognition process at
the line level [18]. For this, there exist line extraction algo-
rithms [19], which enable working at the page level in com-
bination with the line-level end-to-end neural networks. In
the case of music, a similar idea is to use staff extraction
algorithms combined with the end-to-end staff-level recog-
nition.

Recently, several methods have been proposed to solve
the staff detection task [8, 9, 20]. The problem with these
works is that they only studied the extraction of staves as a
computer vision challenge. Similarly, the end-to-end staff-
level neural networks for OMR only experimented with
staves detected manually. Therefore, it is not known how
well the combination of staff retrieval with staff-level end-
to-end neural networks performs in real scenarios.

For all the above, this paper fills a gap in the existing
literature and presents, for the first time, a neural full-page

OMR system that takes advantage of recent advances in
deep learning to solve the task in just two steps: staff re-
trieval and end-to-end staff-level recognition. As we will
see later, this allows us to provide a general approach that
works successfully in different manuscripts by simply pro-
viding training data.

3. METHODOLOGY

The proposed methodology outlines an approach by which
to evaluate a full page-level OMR system using only two
procedures: staff retrieval and end-to-end staff-level recog-
nition. Both of them are solved in a single step each by
using deep neural networks. A graphical overview of the
complete methodology is shown in Figure 1.

One of the main advantages of our methodology is that
it is completely based on machine learning: it is enough
to provide annotated examples (of each task) to build new
and accurate models—which is usually easier and cheaper
than developing a pipeline anew.

Although this approach might not work for arbitrary
types of music scores—e.g., recognizing each staff sep-
arately does not make that sense for scores that include
multi-staff systems—we believe it is worth studying and
providing simple, generalizable, and effective solutions in
those cases where the structural complexity of the scores
makes it possible. Furthermore, our approach is not nec-
essarily restricted to the case of monophony but can be
applied in the case where only one voice appears on
each staff. In our case study, whose details are avail-
able in Section 5, we will apply our methodology to vocal
polyphony scores in Mensural notation—where different
voices appear independently.

3.1 Staff retrieval

The first step in the considered methodology needs to de-
tect and extract the individual staves. With the premise that
all individual staves are compact blocks within the image,
we can apply a layout analysis to estimate the probabil-
ity of each pixel to belong to one of the staves. Previous
work [21] presented a Selectional Auto-Encoder (SAE)-
based framework focused on performing layout analysis by
patches to split the image into different information layers:
staff lines, symbols, lyrics and background. Here, we adapt
that method to directly detect staff regions. Since the staff
blocks are extensive and compact, a patch-wise model may
introduce additional errors in their detection. For avoiding
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that, we propose to adjust the original image to the input
size requirements of the model, being this new resolution
enough to discern the different staves.

Let I = [0, 255]H×W be a grayscale image 1 with
height H and width W in terms of pixels. The SAE model
processes I to return another image S = [0, 1]H×W such
that Si,j ≡ P (Ii,j = ‘staff’)—i.e., S stands for an im-
age with the same size of I, and whose values represent
the probability of each pixel of belonging to any staff re-
gion. Note that the SAE model is trained through super-
vised learning mechanisms, hence a set of documents an-
notated with the location of each staff is required.

After obtaining S, a threshold τ ∈ [0, 1] is applied
to obtain a binary map B = {0, 1}H×W . Then, the
staff regions can be retrieved by performing a connected-
component analysis over the map B. Afterwards, we com-
pute the rectangular coordinates of each component for re-
trieving the bounding boxes. An example of this process
can be found in Figure 2.

(a) Probabilistic map. (b) After the thresholding.

(c) Obtaining bounding boxes.

Figure 2: Example of staff-region prediction, with the
probabilistic map obtained by the SAE model, the result of
applying a threshold to determinate the areas most likely
being staves, and finally the bounding box retrieval.

A drawback to this approach is that it requires that the
different staves do not overlap with each other, as shown in
Figure 3, as that would prevent distinguishing them once
B has been computed. To reduce this possibility, we pro-
pose to apply a vertical reduction factor δ, with which the
bounding boxes in the ground truth will be trimmed ver-
tically, largely avoiding the overlapping in the annotated
documents. Note that, since clipping is necessary to make
the subsequent prediction easier, the bounding boxes ob-
tained by the SAE model should be expanded by the same
factor after being retrieved. In this way, ideally, the de-
tected bounding boxes will cover the staves completely.

3.2 End-to-end staff-level recognition

Once individual staves are extracted, the symbol recog-
nition at this level can be performed by an end-to-end
methodology based on deep neural networks. Within the
many options for this, we consider the approach initially

1 This is with no loss of generality, as the approach can be easily ex-
tended to deal with color images as well.

(a) Original page. (b) With δ = 20%.

Figure 3: Example of ground truth with overlapping that
can be solved by means of applying a reduction factor (δ =
20%, i.e. 20% top and bottom trims).

proposed by Shi et al. [17], given that it outperformed com-
peting methods for OMR [7].

Given an image x, corresponding to a single-staff re-
gion, we want to retrieve the most probable sequence from
a fixed alphabet Σ of music symbols. x can be interpreted
as a sequence of frames (single image columns), so the
aforementioned problem can be solved by using a recurrent
neural network [22]. These networks can provide a prob-
ability per frame P (σ | xi), 1 ≤ i ≤ |x|, σ ∈ Σ ∪ {ε},
where ε is a special token required to separate consecutive
predictions of the same symbol [23].

This stochastic representation of x can be decoded into
an actual sequence of music symbols by first retrieving the
most probable sequence of symbols per frame

σi = arg max
σ∈Σ∪{ε}

P (σ | xi)

and then following a greedy approach which merges con-
secutive frames with the same symbol and removes the
frames whose predicted symbol is ε [7].

In our case, we add a convolutional neural network
on top of the recurrent neural network to automatically
learn features that are appropriate for the specific music
manuscript at issue [24].

The joint Convolutional Recurrent Neural Network
(CRNN) can be trained in an end-to-end fashion by using
the so-called Connectionist Temporal Classification (CTC)
loss function [23]. Given a ground-truth sample consisting
of a single-staff region x and its corresponding sequence
of music symbols σ, CTC is used to modify the network’s
weights to maximize the probability of retrieving σ from x
without the need of providing a framewise localization of
the symbols.

4. EXPERIMENTAL SETUP

4.1 Parameterization of the Neural Networks

In this section, we present the setup of the neural models
for both staff retrieval and staff-level symbol recognition.
For the first one, we considered the use of SAE due to its
high performance and efficiency in the document analysis
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Input Encoding Decoding Output
Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’)
MaxPool(2× 2) UpSamp(2× 2)

[0, 255]512×512 Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’) [0, 1]512×512

MaxPool(2× 2) UpSamp(2× 2)
Conv2D(128, 5× 5, ‘ReLU’) Conv2D(128, 5× 5, ‘ReLU’)
MaxPool(2× 2) UpSamp(2× 2)

Conv2D(1, 5× 5, ‘sigmoid’)

Table 1: Detailed description of the selected SAE architecture, implemented as a Fully-Convolutional Network (FCN).
‘ReLU’ and ‘sigmoid’ denote the Rectifier Linear Unit and Sigmoid activations, respectively.

task [21]. As of the second process, the symbolic music
sequence is obtained by means of a CRNN.

The following notation will be used for the specifi-
cations given below: Conv2D(n, h × w, ‘act’) indicates
a two-dimensional convolution operator of n filters and
kernel size of h × w with ‘act’ denoting the actual ac-
tivation function; MaxPool(h × w) represents a down-
sampling max-pooling operation with a h × w window;
UpSamp(h × w) denotes an up-sampling operator of h
rows andw columns; BLSTM(n) stands for a bidirectional
Long Short-Term Memory unit of n neurons; Dropout(p)
represents a dropout operation with a ratio of p neurons;
Dense(n, ‘act’) indicates a dense layer of n neurons with
‘act’ denoting the actual activation function.

4.1.1 Selectional Auto-Encoder

The SAE configuration used in this work is set according
to previous works for layout analysis, whose details are
given in Table 1. In the staff analysis, the model does not
need to predict small details since staves are extensive and
compact within the document. For this, we can rescale
the original image to the size of the input model, being of
enough resolution to differentiate the staves of the ground
truth. After some informal testing, we configured the input
as an image of 512 × 512 px. The image rescaling was
performed through the OpenCV library.

In addition, as discussed in Section 3.1, a vertical re-
duction factor δ and a threshold τ to determine the pixels
belonging to a staff are necessary. We set δ = 20%, so
the ground-truth staves are top and bottom trimmed by that
factor, and τ = 0.5 to indicate that a probability higher
or equal to 50% is assumed to represent a pixel from a
staff. In our preliminary experiment experiments, δ played
an important role for avoiding overlapping, whereas the
model was quite robust against different values of τ .

4.1.2 Convolutional Recurrent Neural Network

The CRNN follows the best architecture from the work
by Calvo-Zaragoza et al. [7]. It consists of four convolu-
tional layers and max-pooling down-sampling, connected
with a recurrent block of two Bidirectional Long Short-
Term Memory (LSTM) layers. The specifications of the
model are given in Table 2.

Input: [0, 255]64×W

Conv2D(64, 5×5,‘ReLU’), MaxPool(2× 2)
Conv2D(64, 5×5,‘ReLU’), MaxPool(2× 2)

Conv2D(128, 3×3,‘ReLU’), MaxPool(2× 1)
Conv2D(128, 3×3,‘ReLU’), MaxPool(2× 1)

BLSTM(256), Dropout(0.5)
BLSTM(256), Dropout(0.5)
Dense(|Σ ∪ {ε}|, ‘softmax’)

Table 2: Architecture of the CRNN considered for staff-
level recognition. ‘softmax’ indicates the Softmax activa-
tion, that normalized the output to a probability over the set
of symbols (plus the ‘blank’ symbol denoted by ε). Given
that the images are of variable width, this dimension of the
input is not specified (indicated asW).

4.2 Corpora

To evaluate our method, we consider the following corpora
of Mensural manuscripts:

• The CAPITAN dataset, which encodes a complete
Missa composed during the second half of the 17th
century. Annotations are specifically provided for
OMR [25].

• The Symbolically Encoded Il Laurro Secco (SEILS)
dataset, which consists of scores from the 16th-
century anthology of Italian madrigals Il Lauro
Secco. Among many formats, the dataset includes
the required format to perform OMR [26].

CAPITAN SEILS

Engraving Handwritten Printed
Pages 97 150
Staves 737 1 278
Running symbols 17 112 31 589
Symbol categories 53 33

Table 3: Corpora statistics.

Page samples from these corpora can be seen in
Figure 4. As observed, CAPITAN is handwritten and SEILS

is printed. This heterogeneity benefits the verification that
the proposed methodology is generalizable to a variety of
manuscript types. In addition, some descriptive statistics
about the corpora are provided in Table 3.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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(a) CAPITAN

(b) SEILS

Figure 4: An example page image from of each dataset
considered in the experimentation.

4.3 Evaluation protocol

As of the experimentation, the results have been computed
using a 5-fold cross-validation technique (5-CV), each of
which takes three data partitions—training, validation and
testing—with 60%, 20% and 20% of the whole set of doc-
uments, respectively. The training process was performed
during 100 epochs, monitoring with the validation partition
and reporting the results on the test partition. The exper-
iments have been performed using the Keras v.2.3.1 [27]
library with TensorFlow v.1.14 as backend.

In the literature, the experiments are commonly evalu-
ated partially, focusing only on individual processes, re-
gardless of the impact they may have on the transcription
into a digital format, which is precisely the ultimate pur-
pose of the OMR field. The main goal of this paper is
to evaluate a full-page OMR system combining a staff-
retrieval method based on SAE and an end-to-end staff-
level recognition. Therefore, we will be able to analyze
the effect of staff retrieval in the symbol recognition step.

Nevertheless, experiments have been divided into two
parts: an assessment of the staff bounding-box recognition,
in which we will present the computation of the average of
Intersection over Union (IoU), which provides a measure
of the overlapping between the set of retrieved staves and
the ground-truth ones (the higher, the better). With regard
to the second step of the proposal, the objective is to check
the recognition of the sequence of symbols within each
staff obtained in the first step. In practical OMR systems, a
critical factor to be considered is the number of corrections
the user has to perform. Hence, we decided to report the
final results in terms of Symbol Error Rate (SER), which is
computed as the ratio of editing operations needed to cor-
rect the transcription of the symbol sequence (the lower,
the better).

5. RESULTS

Concerning the staff retrieval itself, this step detected all of
the 737 staves that CAPITAN contains (considering all the
test partitions within the 5-CV) but also retrieved an addi-
tional box that did not correspond to a staff. Similarly, the
model for SEILS retrieved correctly all the 1 278 staves,
while 152 regions were detected where there were none.
Therefore, whereas all real staves are retrieved, the process
also yields some false positives, that are supposed to be
easily removed in an interactive environment. As a refer-
ence in geometric terms, the model for CAPITAN obtained
86.3% of IoU, while SEILS achieved 79.7%. This indicates
that the retrieved boxes generally fit well the ground-truth
location of the staves. We will see below that this is ac-
curate enough for the task of retrieving the inner symbol
sequences.

To complement these numerical results, Figure 5 con-
tains an example of a comparison between a ground-truth
staff with the predicted one. Note that, although the
IoU obtained in that example is 80.5%, the retrieved staff
properly covers the music information. As evidenced in
Figure 6, most of the predicted bounding boxes have an
IoU between 70% and 95%.

Figure 5: Example of a retrieved staff from SEILS, colored
in yellow, compared with the ground-truth box, colored in
blue. For this example, the IoU reaches 80.5%.
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Figure 6: Average histogram of staves predicted by the
SAE model and ordered by IoU (with a granularity of 5%).

We now proceed to present the results of the sym-
bol recognition step. To fully evaluate the two-step pro-
posed method, we should first take into account two main
points: first, the staff retrieval SAE can only be trained
with ground-truth data, since it constitutes the earlier step
in the approach; and second, the end-to-end model would
be ideally trained with the bounding boxes predicted in the
last step—closer to the real scenario—but it is also pos-
sible to directly use the ground-truth staves. While in all
cases the sequence of music symbols to be predicted is the
same, we can compare the results with different configura-
tions of the input images provided for training the CRNN:
ground-truth staff regions (GT); staff regions predicted by
the SAE, once trained (Pred.); both ground-truth staff re-
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gions and staff regions predicted by the SAE, once trained
(GT+Pred.).

Likewise, for the test partition, a real case only con-
templates evaluating with the automatically detected staves
(real scenario); however, we have also evaluated on
ground-truth staves to provide a reference of the loss
caused by the automatic staff retrieval.

We report in Table 4 the results of the end-to-end staff-
level recognition of symbols, which has been tested with
both CAPITAN and SEILS datasets, and each one in turn
evaluated with the cases mentioned above.

Data CAPITAN SEILSTraining staves Test staves
Real scenario

GT Pred. 16.8± 3.7 5.2± 1.4
Pred. Pred. 14.8± 3.6 4.4± 0.5
GT+Pred. Pred. 11.5 ± 2.2 3.7 ± 0.8

Reference
GT GT 13.2± 1.1 4.4± 1.2
GT+Pred. GT 10.8 ± 1.1 3.6 ± 0.9

Table 4: Average ± std. deviation results in terms of SER
(%) of a 5-CV experiment for the staff-level end-to-end
recognition with different combinations of training and test
data during the staff retrieval stage. GT stands for ground-
truth staves, while Pred. represents the predicted ones.

First, we focus on the results obtained in the real sce-
nario, i.e. those in which the test staves have been pro-
vided by the staff-retrieval step. It can be observed that
training with GT achieves successful outcomes, being the
SER metric 16.8% and 5.2% for CAPITAN and SEILS, re-
spectively. Results are improved if the training data con-
tains predicted staves instead of GT, with figures that reach
14.8% for CAPITAN and 4.4% for SEILS. The reason be-
hind this phenomenon may come from what is seen in
Figure 5: the staff is correctly detected but the box is ac-
tually different from the ground-truth one. Therefore, if
this difference is also introduced during training, the model
is better prepared for what occurs in the real case. De-
spite this, the experiments reveal that the robustness of the
end-to-end model is optimized if a combination of GT and
Pred. is performed in the training process, allowing to re-
duce the symbol error rate until 11.5% and 3.7% for CAP-
ITAN and SEILS datasets, respectively. This combination
in the training data seems similar to the typical machine
learning strategy called data augmentation [28, 29], given
that the Pred. boxes depict variations with respect to the
GT ones.

If we analyze the reference results, i.e., those obtained
by the end-to-end step tested with GT boxes, we observe
that the end-to-end model outperforms the real case, as
both training and test data are part of the annotated bound-
ing boxes by the user. Similarly, the data augmentation
strategy allows to even improve the results. When compar-
ing to the real scenario, the reference case reports slightly
better results, with negligible differences (from 11.5% to
10.8% for CAPITAN and from 3.7% to 3.6% for SEILS, at
best).

What is important about the figures above is that they
demonstrate that introducing an automatic staff detection
step barely affects the overall performance of the system—
according to the best values obtained with predictions
compared to the best values obtained with ground-truth
boxes. Therefore, we can validate our methodology as
suitable to deal with the complete recognition of Mensu-
ral manuscripts or even any type of musical document that
depicts a comparable structure.

Finally, although this is not of special relevance within
the scope of this paper, we see that the machine learning
models find it easier to deal with printed manuscripts, as
the error figures from SEILS are clearly below those from
the CAPITAN one. Probably, the regularity of the printed
symbols makes the task easier than in the handwritten case.

6. CONCLUSIONS

OMR is an interesting field of study, but most of its re-
search focus on individual steps that avoid evaluating the
impact within the full system. In this paper, a full-page
OMR system with neural networks has been presented. It
is based on the combination of staff-retrieval and symbol
sequence recognition steps.

The first step—staff retrieval—has been implemented
as a SAE model based on a successful architecture used
in previous work for layout analysis. This neural network
predicts staff regions as compact blocks, processing the
whole image in only one step, and then bounding boxes of
predicted staves are extracted. The second step—end-to-
end staff-level recognition—transcribes the content of the
predicted staves into a digital format, which is the main
goal of OMR.

The paper includes a study of the impact of the first step
in the final performance in the digitization for two Men-
sural manuscripts. The methodology has been assessed
in terms of SER, which determines the number of correc-
tions that a user should make to have the correct sequence
transcribed. The results reveal that ground-truth staves are
not the best option for training the end-to-end model in
a real case, in which the transcription will be performed
from predicted staves. The assessment of the model trained
with predicted staves shows performances as good as in the
ideal case, in which the training and the test datasets con-
sist of ground truth regions. This means that the precision
in staff retrieval is not the most important issue in the sym-
bol recognition task. Furthermore, we observed that train-
ing the end-to-end symbol recognizer with a combination
of predicted and ground-truth staves provides the best re-
sults for both, real and ideal situations, with non-significant
differences between them. Therefore, between a fully au-
tomatic OMR system and other where the bounding boxes
are annotated by the user, the performance hardly varies.
We can then conclude that our approach allows transcrib-
ing reliably the music content with minimum human effort.

In future works, we plan to keep on researching
simple and generalizable strategies for more complex
manuscripts, such as those corresponding to polyphonic
scores in Western modern notation.
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