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ABSTRACT

In this paper, we present MusPy, an open source Python
library for symbolic music generation. MusPy provides
easy-to-use tools for essential components in a music gen-
eration system, including dataset management, data I/O,
data preprocessing and model evaluation. In order to
showcase its potential, we present statistical analysis of
the eleven datasets currently supported by MusPy. More-
over, we conduct a cross-dataset generalizability experi-
ment by training an autoregressive model on each dataset
and measuring held-out likelihood on the others—a pro-
cess which is made easier by MusPy’s dataset management
system. The results provide a map of domain overlap be-
tween various commonly used datasets and show that some
datasets contain more representative cross-genre samples
than others. Along with the dataset analysis, these results
might serve as a guide for choosing datasets in future re-
search. Source code and documentation are available at
https://github.com/salu133445/muspy.

1. INTRODUCTION

Recent years have seen progress on music generation,
thanks largely to advances in machine learning [1]. A mu-
sic generation pipeline usually consists of several steps—
data collection, data preprocessing, model creation, model
training and model evaluation, as illustrated in Figure 1.
While some components need to be customized for each
model, others can be shared across systems. For symbolic
music generation in particular, a number of datasets, rep-
resentations and metrics have been proposed in the litera-
ture [1]. As a result, an easy-to-use toolkit that implements
standard versions of such routines could save a great deal
of time and effort and might lead to increased reproducibil-
ity. However, such tools are challenging to develop for a
variety of reasons.

First, though there are a number of publicly-available
symbolic music datasets, the diverse organization of these
collections and the various formats used to store them
presents a challenge. These formats are usually designed
for different purposes. Some focus on playback capability
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Figure 1. An example of a learning-based music genera-
tion system. MusPy provides basic routines specific to mu-
sic as well as interfaces to machine learning frameworks.

(e.g., MIDI), some are developed for music notation soft-
wares (e.g., MusicXML [2] and LilyPond [3]), some are
designed for organizing musical documents (e.g., Music
Encoding Initiative (MEI) [4]), and others are research-
oriented formats that aim for simplicity and readability
(e.g., MuseData [5] and Humdrum [6]. Oftentimes re-
searchers have to implement their own preprocessing code
for each different format. Moreover, while researchers can
implement their own procedures to access and process the
data, issues of reproducibility due to the inconsistency of
source data have been raised in [7] for audio datasets.

Second, music has hierarchy and structure, and thus dif-
ferent levels of abstraction can lead to different represen-
tations [8]. Moreover, a number of music representations
designed specially for generative modeling of music have
also been proposed in prior art, for example, as a sequence
of pitches [9–12], events [13–16], notes [17] or a time-
pitch matrix (i.e., a piano roll) [18, 19].

Finally, efforts have been made toward more robust
objective evaluation metrics for music generation sys-
tems [20] as these metrics provide not only an objective
way for comparing different models but also indicators
for monitoring training progress in machine learning-based
systems. Given the success of mir_eval [21] in evaluating
common MIR tasks, a library providing implementations
of commonly used evaluation metrics for music generation
systems could help improve reproducibility.

To manage the above challenges, we find a toolkit ded-
icated for music generation a timely contribution to the
MIR community. Hence, we present in this paper a new
Python library, MusPy, for symbolic music generation. It
provides essential tools for developing a music generation
system, including dataset management, data I/O, data pre-
processing and model evaluation.

With MusPy, we provide a statistical analysis on the
eleven datasets currently supported by MusPy, with an eye
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Figure 2. System diagram of MusPy. The MusPy Music object at the center is the core element of MusPy.

to unveiling statistical differences between them. More-
over, we conduct three experiments to analyze their rela-
tive diversities and cross-dataset domain compatibility of
the various datasets. These results, along with the statisti-
cal analysis, together provide a guide for choosing proper
datasets for future research. Finally, we also show that
combining multiple heterogeneous datasets could help im-
prove generalizability of a music generation system.

2. RELATED WORK

Few attempts, to the best of our knowledge, have been
made to develop a dedicated library for music generation.
The Magenta project [22] represents the most notable ex-
ample. While MusPy aims to provide fundamental routines
in data collection, preprocessing and analysis, Magenta
comes with a number of model instances, but is tightly
bound with TensorFlow [23]. In MusPy, we leave the
model creation and training to dedicated machine learning
libraries, and design MusPy to be flexible in working with
different machine learning frameworks.

There are several libraries for working with symbolic
music. music21 [24] is one of the most representative
toolkits and targets studies in computational musicology.
While music21 comes with its own corpus, MusPy does
not host any dataset. Instead, MusPy provides functions to
download datasets from the web, along with tools for man-
aging different collections, which makes it easy to extend
support for new datasets in the future. jSymbolic [25] fo-
cuses on extracting statistical information from symbolic
music data. While jSymbolic can serve as a powerful fea-
ture extractor for training supervised classification mod-
els, MusPy focuses on generative modeling of music and
supports different commonly used representations in music
generation. In addition, MusPy provides several objective
metrics for evaluating music generation systems.

Related cross-dataset generalizability experiments [15]
show that pretraining on a cross-domain data can improve
music generation results both qualitatively and quantita-
tively. MusPy’s dataset management system makes it eas-
ier for us to thoroughly verify this hypothesis by examining
pairwise generalizabilities between various datasets.

(a)

(b)

Figure 3. Examples of (a) training data preparation and
(b) result writing pipelines using MusPy.

3. MUSPY

MusPy is an open source Python library dedicated for sym-
bolic music generation. Figure 2 presents the system dia-
gram of MusPy. It provides a core class, MusPy Music
class, as a universal container for symbolic music. Dataset
management system, I/O interfaces and model evaluation
tools are then built upon this core container. We provide
in Figure 3 examples of data preparation and result writing
pipelines using MusPy.

3.1 MusPy Music class and I/O interfaces

We aim at finding a middle ground among existing formats
for symbolic music and design a unified format dedicated

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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Dataset Format Hours Songs Genre Melody Chords Multitrack

Lakh MIDI Dataset (LMD) [26] MIDI >9000 174,533 misc 4 4 4
MAESTRO Dataset [27] MIDI 201.21 1,282 classical
Wikifonia Lead Sheet Dataset [28] MusicXML 198.40 6,405 misc X X
Essen Folk Song Database [29] ABC 56.62 9,034 folk X X
NES Music Database [30] MIDI 46.11 5,278 game X X
Hymnal Tune Dataset [31] MIDI 18.74 1,756 hymn X
Hymnal Dataset [31] MIDI 17.50 1,723 hymn
music21 Corpus [24] misc 16.86 613 misc 4 4
Nottingham Database (NMD) [32] ABC 10.54 1,036 folk X X
music21 JSBach Corpus [24] MusicXML 3.46 410 classical X
JSBach Chorale Dataset [11] MIDI 3.21 382 classical X

Table 1. Comparisons of datasets currently supported by MusPy. Triangle marks indicate partial support. Note that, in this
version, only MusicXML and MIDI files are included for the music21 Corpus.

MIDI MusicXML MusPy

Sequential timing X X
Playback velocities X 4 X
Program information X 4 X

Layout information X
Note beams and slurs X
Song/source meta data 4 X X
Track/part information 4 X X
Dynamic/tempo markings X X
Concept of notes X X
Measure boundaries X X
Human readability 4 X

Table 2. Comparisons of MIDI, MusicXML and the pro-
posed MusPy formats. Triangle marks indicate optional or
limited support.

for music generation. MIDI, as a communication proto-
col between musical devices, uses velocities to indicate dy-
namics, beats per minute (bpm) for tempo markings, and
control messages for articulation, but it lacks the concepts
of notes, measures and symbolic musical markings. In
contrast, MusicXML, as a sheet music exchanging format,
has the concepts of notes, measures and symbolic musi-
cal markings and contains visual layout information, but
it falls short on playback-related data. For a music genera-
tion system, however, both symbolic and playback-specific
data are important. Hence, we follow MIDI’s standard for
playback-related data and MusicXML’s standard for sym-
bolic musical markings.

In fact, the MusPy Music class naturally defines a uni-
versal format for symbolic music, which we will refer to
as the MusPy format, and can be serialized into a human-
readable JSON/YAML file. Table 2 summarizes the key
differences among MIDI, MusicXML and the proposed
MusPy formats. Using the proposed MusPy Music class
as the internal representation for music data, we then pro-
vide I/O interfaces for common formats (e.g., MIDI, Mu-
sicXML and ABC) and interfaces to other symbolic music
libraries (e.g., music21 [24], mido [33], pretty_midi [34]

(a) on-the-fly mode

(b) preconverted mode

Figure 4. Two internal processing modes for iterating over
a MusPy Dataset object.

and Pypianoroll [35]). Figure 3(b) provides an example of
result writing pipeline using MusPy.

3.2 Dataset management

MusPy provides an easy-to-use dataset management sys-
tem similar to torchvision datasets [36] and TensorFlow
Dataset [37]. Table 1 presents the list of datasets currently
supported by MusPy and their comparisons. Each sup-
ported dataset comes with a class inherited from the base
MusPy Dataset class. The modularized and flexible design
of the dataset management system makes it easy to handle
local data collections or extend support for new datasets
in the future. Figure 4 illustrates the two internal process-
ing modes when iterating over a MusPy Dataset object. In
addition, MusPy provides interfaces to PyTorch [38] and
TensorFlow [23] for creating input pipelines for machine
learning (see Figure 3(a) for an example).

3.3 Representations

Music has multiple levels of abstraction, and thus can
be expressed in various representations. For music gen-
eration in particular, several representations designed for
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Representation Shape Values Default configurations

Pitch-based T × 1 {0, 1, . . . , 129} 128 note-ons, 1 hold, 1 rest (support only monophonic music)
Event-based T × 1 {0, 1, . . . , 387} 128 note-ons, 128 note-offs, 100 time shifts, 32 velocities
Piano-roll T × 128 {0, 1} or R+ {0, 1} for binary piano rolls; R+ for piano rolls with velocities
Note-based N × 4 N or R+ List of (time, pitch, duration, velocity) tuples

Table 3. Comparisons of representations supported by MusPy. T and N denote the numbers of time steps and notes,
respectively. Note that the configurations can be modified to meet specific requirements and use cases.

generative modeling of symbolic music have been pro-
posed and used in the literature [1]. These representations
can be broadly categorized into four types—the pitch-
based [9–12], the event-based [13–16], the note-based [17]
and the piano-roll [18,19] representations. Table 3 presents
a comparison of them. We provide in MusPy implementa-
tions of these representations and integration to the dataset
management system. Figure 3(a) provides an example
of preparing training data in the piano-roll representation
from the NES Music Database using MusPy.

3.4 Model evaluation tools

Model evaluation is another critical component in devel-
oping music generation systems. Hence, we also integrate
into MusPy tools for audio rendering as well as score and
piano-roll visualizations. These tools could also be use-
ful for monitoring the training progress or demonstrating
the final results. Moreover, MusPy provides implementa-
tions of several objective metrics proposed in the litera-
ture [17, 19, 39]. These objective metrics, as listed below,
could be used to evaluate a music generation system by
comparing the statistical difference between the training
data and the generated samples, as discussed in [20].

• Pitch-related metrics—polyphony, polyphony rate,
pitch-in-scale rate, scale consistency, pitch entropy and
pitch class entropy.

• Rhythm-related metrics—empty-beat rate, drum-in-
pattern rate, drum pattern consistency and groove con-
sistency.

3.5 Summary

To summarize, MusPy features the following:

• Dataset management system for commonly used
datasets with interfaces to PyTorch and TensorFlow.

• Data I/O for common symbolic music formats (e.g.,
MIDI, MusicXML and ABC) and interfaces to
other symbolic music libraries (e.g., music21, mido,
pretty_midi and Pypianoroll).

• Implementations of common music representations for
music generation, including the pitch-based, the event-
based, the piano-roll and the note-based representations.

• Model evaluation tools for music generation systems, in-
cluding audio rendering, score and piano-roll visualiza-
tions and objective metrics.

All source code and documentation can be found at
https://github.com/salu133445/muspy.
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Figure 5. Length distributions for different datasets.

4. DATASET ANALYSIS

Analyzing datasets is critical in developing music genera-
tion systems. With MusPy’s dataset management system,
we can easily work with different music datasets. Below
we compute the statistics of three key elements of a song—
length, tempo and key using MusPy, with an eye to un-
veiling statistical differences among these datasets. First,
Figure 5 shows the distributions of song lengths for differ-
ent datasets. We can see that they differ greatly in their
ranges, medians and variances.

Second, we present in Figure 6 the distributions of ini-
tial tempo for datasets that come with tempo information.
We can see that all of them are generally bell-shaped but
with different ranges and variances. We also note that there
are two peaks, 100 and 120 quarter notes per minute (qpm),
in Lakh MIDI Dataset (LMD), which is possibly because
these two values are often set as the default tempo values
in music notation programs and MIDI editors/sequencers.
Moreover, in Hymnal Tune Dataset, only around ten per-
cent of songs have an initial tempo other than 100 qpm.

Finally, Figure 7 shows the histograms of keys for dif-
ferent datasets. We can see that the key distributions are
rather imbalanced. Moreover, only less than 3% of songs
are in minor keys for most datasets except the music21
Corpus. In particular, LMD has the most imbalanced key
distributions, which might be due to the fact that C major is
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Figure 6. Initial-tempo distributions for different datasets
(those without tempo information are not presented).
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Figure 7. Key distributions for different datasets. The keys
are sorted w.r.t. their frequencies in Lakh MIDI Dataset.

often set as the default key in music notation programs and
MIDI editors/sequencers. 1 These statistics could provide
a guide for choosing proper datasets in future research.

5. EXPERIMENTS AND RESULTS

In this section, we conduct three experiments to analyze
the relative complexities and the cross-dataset general-
izabilities of the eleven datasets currently supported by
MusPy (see Table 1). We implement four autoregressive
models—a recurrent neural network (RNN), a long short-
term memory (LSTM) network [40], a gated recurrent unit
(GRU) network [41] and a Transformer network [42].

5.1 Experiment settings

For the data, we use the event representation as specified
in Table 3 and discard velocity events as some datasets
have no velocity information (e.g., datasets using ABC for-
mat). Moreover, we also include an end-of-sequence event,
leading to in total 357 possible events. For simplicity, we
downsample each song into four time steps per quarter note
and fix the sequence length to 64, which is equivalent to

1 Note that key information is considered as a meta message in a MIDI
file. It does not affect the playback and thus can be unreliable sometimes.
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Figure 8. Log-perplexities for different models on differ-
ent datasets, sorted by the values for the LSTM model.

four measures in 4/4 time. In addition, we discard repeat
information in MusicXML data and use only melodies in
Wikifonia dataset. We split each dataset into train–test–
validation sets with a ratio of 8 : 1 : 1. For the train-
ing, the models are trained to predict the next event given
the previous events. We use the cross entropy loss and
the Adam optimizer [43]. For evaluation, we randomly
sample 1000 sequences of length 64 from the test split,
and compute the perplexity of these sequences. We im-
plement the models in Python using PyTorch. For repro-
ducibility, source code and hyperparmeters are available at
https://github.com/salu133445/muspy-exp.

5.2 Autoregressive models on different datasets

In this experiment, we train the model on some dataset D
and test it on the same dataset D. We present in Figure 8
the perplexities for different models on different datasets.
We can see that all models have similar tendencies. In gen-
eral, they achieve smaller perplexities for smaller, homoge-
neous datasets, but result in larger perplexities for larger,
more diverse datasets. That is, the test perplexity could
serve as an indicator for the diversity of a dataset. More-
over, Figure 9 shows perplexities versus dataset sizes (in
hours). By categorizing datasets into multi-pitch (i.e., ac-
cepting any number of concurrent notes) and monophonic
datasets, we can see that the perplexity is positively corre-
lated to the dataset size within each group.

5.3 Cross-dataset generalizability

In this experiment, we train a model on some dataset
D, while in addition to testing it on the same dataset D,
we also test it on each other dataset D′. We present in
Figure 10 the perplexities for each train–test dataset pair.
Here are some observations:

• Cross dataset generalizability is not symmetric in gen-
eral. For example, a model trained on LMD generalizes
well to all other datasets, while not all models trained on
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Figure 9. Log-perplexities for the LSTM model versus
dataset size in hours. Each point corresponds to a dataset.

other datasets generalize to LMD, which is possibly due
to the fact that LMD is a large, cross-genre dataset.

• Models trained on multi-pitch datasets generalize well
to monophonic datasets, while models trained on mono-
phonic datasets do not generalize to multi-pitch datasets
(see the red block in Figure 10).

• The model trained on JSBach Chorale Dataset does not
generalize to any of the other datasets (see the orange
block in Figure 10). This is possibly because its samples
are downsampled to a resolution of quarter note, which
leads to a distinct note duration distribution.

• Most datasets generalize worse to NES Music Database
compared to other datasets (see the green block
in Figure 10). This is possibly due to the fact that NES
Music Database contains only game soundtracks.

5.4 Effects of combining heterogeneous datasets

From Figure 10 we can see that LMD has the best gener-
alizability, possibly because it is large, diverse and cross-
genre. However, a model trained on LMD does not gen-
eralize well to NES Music Database (see the brown block
in the close-up of Figure 10). We are thus interested in
whether combing multiple heterogeneous datasets could
help improve generalizability.

We combine all eleven datasets listed in Table 1 into one
large unified dataset. Since these datasets differ greatly in
their sizes, simply concatenating the datasets might lead
to severe imbalance problem and bias toward the largest
dataset. Hence, we also consider a version that adopts
stratified sampling during training. Specifically, to acquire
a data sample in the stratified dataset, we uniformly choose
one dataset out of the eleven datasets, and then randomly
pick one sample from that dataset. Note that stratified sam-
pling is disabled at test time.

We also include in Figures 8, 9 and 10 the results for
these two datasets. We can see from Figure 10 that com-
bining datasets from different sources improves the gener-
alizability of the model. This is consistent with the find-
ing in [15] that models trained on certain cross-domain
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Figure 10. Cross-dataset generalizability results. The val-
ues and colors represent the log-perplexities of a LSTM
model trained on a specific dataset (row) and tested on an-
other dataset (column). The datasets are sorted by the di-
agonal values, i.e., trained and tested on the same dataset.

datasets generalize better to other unseen datasets. More-
over, stratified sampling alleviates the source imbalance
problem by reducing perplexities in most datasets with a
sacrifice of an increased perplexity on LMD.

6. CONCLUSION

We have presented MusPy, a new toolkit that provides es-
sential tools for developing music generation systems. We
discussed the designs and features of the library, along
with data pipeline examples. With MusPy’s dataset man-
agement system, we conducted a statistical analysis and
experiments on the eleven currently supported datasets to
analyze their relative diversities and cross-dataset gener-
alizabilities. These results could help researchers choose
appropriate datasets in future research. Finally, we showed
that combining heterogeneous datasets could help improve
generalizability of a machine learning model.
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