
SCORE FOLLOWING WITH HIDDEN TEMPO USING
A SWITCHING STATE-SPACE MODEL

Yucong Jiang
University of Richmond

yjiang3@richmond.edu

Christopher Raphael
Indiana University Bloomington
craphael@indiana.edu

ABSTRACT

A score-following program traces the notes in a musical
score during a performance. This capability is essential to
many meaningful applications that synchronize audio with
a score in an on-line fashion. Existing algorithms often
stumble on certain difficult cases, one of which is piano
music. This paper presents a new method to tackle such
cases. The method treats tempo as a variable rather than a
constant (with constraints), allowing the program to adapt
to live performance variations. This is first expressed by a
Kalman filter model at the note level, and then by an almost
equivalent switching state-space model at the audio frame
level. The latter contains both discrete and continuous hid-
den variables, and is computationally intractable. Weshow
how certain reasonable approximations make the computa-
tion manageable. This new method is tested on a dataset of
50 piano excerpts. Compared with a previously established
state-of-the-art algorithm, the new method shows more sta-
ble and accurate results: it reduces fatal score-following
errors, and improves accuracy from 65.0% to 69.1%.

1. INTRODUCTION

The score-following problem involves building a computer
program that can trace musical events in a given musi-
cal score during a live performance. This is called “on-
line audio-to-score alignment”, which constantly figures
out the current position in the score while the performance
is going on; the program can only access the audio received
before the current moment. In contrast, offline audio-to-
score alignments start the task after the performance is
done, allowing the program to access the entire recording.

Score following enables a number of useful applica-
tions: a musical score page turner [1], automatic accom-
paniment systems [2], virtual scores designed to react to a
live performance [3], real-time audio enhancement during
a music performance, and even a computer tutor [4].

A typical score-following algorithm infers the score
positions by evaluating the hypothesis paths through a
state graph, each path representing a possible performance.
From the Bayesian point of view, the evaluation criteria

c© Y. Jiang and C. Raphael. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Y. Jiang and C. Raphael, “Score following with hidden tempo using
a switching state-space model”, in Proc. of the 21st Int. Society for Music
Information Retrieval Conf., Montréal, Canada, 2020.

for a path include two aspects: how much a hypothesis is
consistent with the prior model, which represents the an-
ticipation of the musical performance before observing any
data, and how much the data support a hypothesis, which is
called the data model. This paper focuses on improving the
former aspect, which is essentially about timing—when a
note appears and how long it lasts.

Many researchers have considered timing in their prior
models. [5, 6] used a hidden semi-Markov model where
the duration of each state represents a note length. Others
chose to directly model the tempo as a latent variable: [7,
8] treated the tempo as a discrete variable, while [9–12]
adopted continuous state-space models, and used particle
filter to approximate the results. [13] developed a hybrid
graphical model, and tested it by aligning orchestra music
offline. [13] provides a jumping-off point for the proposed
method here. Note that feature-based methods (e.g., DTW
or DNN) are beyond the scope of this discussion.

Unfortunately, existing score-following algorithms can
still stumble on some challenging cases, especially when
the data model is not reliable; e.g., shared notes among
neighboring chords, extended sound from previous chords
by pedaling, and blurring effects caused by fast playing, as
in piano music. This paper presents a new method aim-
ing to improve the timing model—this aspect is especially
meaningful in those challenging cases. In practice, we can
assume that the tempo tends to be smooth: the tempo is
steady most of the time, sometimes floating around slowly,
but rarely jumps up and down abruptly. Therefore, the new
method models the tempo as a continuous variable, and it is
smooth. This allows the note lengths (or the local tempo)
to adapt to the performance data. One of the most pop-
ular state-space models, the Kalman filter model, is suit-
able for tracking such a tempo variable (Section 3.1). It
becomes a switching state-space model after changing the
scope of time (Section 3.2). Section 4 shows how the in-
creased computational complexity is manageable with ap-
proximations. This new method was tested on real piano
performance data presented in Section 5.

2. REPRESENTING SCORE AND AUDIO

We can view the musical score in a “homophonic” way,
representing the score as a sequence of chords, as in Figure
1. It enables polyphonic music to be linearly represented
as the same fashion as in monophonic music—a sequence
of chords, each chord associated with a score position.

693

Figure 1. “Homophonic” view of polyphonic music [14].
The left bar is the original score with two voices. The right
bar is its “homophonic” view.

The audio is sampled, and evenly segmented into
frames, with some overlap between adjacent frames. Each
frame is transformed into a Fourier spectrum [15]. The
data model here defines the likelihood of observing the
data spectrum given the chord index. Denote y as the spec-
trum of a frame, a vector {yw}, 1 ≤ w ≤ W . Denote the
template (see [13]) of the kth chord as qk = {qkw}, which
sums to 1. The likelihood of observing the data y given the
index k is:

p(y|k) =
W∏
w=1

(qkw)y
′
w (1)

where y′w = yw/
∑W
w=1 yw.

3. THE MODEL

3.1 Kalman Filter Model for Tempo

The polyphonic score is represented as a sequence of
chords, with a new chord appearing whenever any note
is added, ended, or changed in the current chord. Let’s
assume there are K such chords in the musical score,
each chord with a nominal musical length (e.g., 1/4 for
a quarter note and 1 for a whole note) represented by lk,
k = 1, . . . ,K. Weassume every chord has its own tempo
value, and it doesn’t change within a chord’s lifetime. Let
tk be the tempo of the kth chord (seconds per whole note),
and ok be this chord’s onset time (in seconds). The joint
evolution of the tempo and the onset is modeled as a lin-
ear dynamical system. If we treat the onsets as observable
data, the formula is the same as a Kalman filter model:

ok+1 = ok + lktk + εk+1 (2)

tk+1 = tk + ηk+1 (3)

where all random variables have normal distributions:

o1 ∼ N(µo,1, σ
2
o,1)

t1 ∼ N(µt,1, σ
2
t,1)

εk ∼ N(0, σ2
ε,k), k = 2, . . . ,K

ηk ∼ N(0, σ2
η,k), k = 2, . . . ,K

The εk’s and ηk’s are all mutually independent, and they
are independent from o1 and t1 as well. (In the experi-
ments, however, σε,k was modified to be proportional to
tk, and ση,k proportional to lktk, with manually set scales.)
The dependency graph is in Figure 2. In the rest of this pa-
per, we refer to a “chord” as a “note” for simplicity’s sake.

3.1.1 Marginal Likelihood of Onsets

This linear dynamical system can be viewed as a Markov
process of generating the onsets, oK1 = (o1, o2, . . . , oK),

Figure 2. Dependency graph for the tempo and the onset.

demonstrated as follows. According to the chain rule and
the described model, we can write

p(oK1) = p(o1)

K−1∏
k=1

p(ok+1|ok1)

= p(o1)
K−1∏
k=1

∫
tk

p(ok+1|tk, ok)p(tk|ok1) dtk

Because ok+1 = ok + lktk + εk+1, the integral factors can
be further simplified as∫
tk

N(ok+1; ok + lktk, σ
2
ε,k+1)N(tk;µt(o

k
1), σ2

t (ok1)) dtk

= N(ok+1; ok + lkµt(o
k
1), σ2

ε,k+1 + l2kσ
2
t (ok1))

where µt(ok1) = E(tk|ok1) and σ2
t (ok1) = V ar(tk|ok1),

which can be iteratively calculated using a Kalman filter
as the system receives o1, o2, . . . , ok [16]. Thus, we have

p(oK1) = (4)

p(o1)
K−1∏
k=1

N(ok+1; ok + lkµt(o
k
1), σ2

ε,k+1 + l2kσ
2
t (ok1))

which can be computed iteratively as k increases.

3.2 Frame-wise Representation

The discussions in Section 3.1 is based on the linear dy-
namical system at the note level, as in Figure 2 where the
discretized “time step” is the note index. However, in real-
world applications, the audio is received frame by frame
(every 16 milliseconds in the experiments). In order to in-
corporate such audio frames as observed data, we have to
change the scope and view the model in Figure 2 at the
frame level, with each audio frame as a time step. Let’s
use n to denote the index of a frame, n = 1, . . . , N , where
N is the total number of frames in the audio. Any frame,
n, has a label variable, kn ∈ {0, . . . ,K}, which is the in-
dex of the sounding note at that frame. Frames before the
first note being played are labeled as 0, i.e., {n : kn = 0}.
Denote yn as the observed audio at the nth frame. We can
assume the distribution of the audio frame data only de-
pends on this frame’s label—which note is being played.
Figure 3 shows the model at both levels in the same graph.

The note onsets and the frame labels are nearly inter-
changeable. Let ∆ be the time difference between adja-
cent frames (in milliseconds), a sequence of frame labels,
kn1 , can be recovered from a sequence of onsets, ok1 , or vice
versa, like this:

kn = min
{
k ∈ {0, . . . ,K} : n∆ < ok+1

}
(5)

ok ≈ ∆ ·min
{
n ∈ {1, . . . , N} : kn = k

}
(6)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

694

Figure 3. Dependency graph. Upper panel is note level;
lower panel is frame level. Circles are continuous vari-
ables; squares are discrete. Observed variables are shaded.

The note-wise representation and the frame-wise repre-
sentation are almost equivalent, except that there are two
additional assumptions in the latter. First, the note onsets
are now discrete because they have to be multiples of ∆, as
in Equation 6. Second, a note must last at least one frame
long, so ok+1−ok ≥ ∆. Because the labels and the onsets
can be derived deterministically from each other as in the
above two equations, the onsets can actually be viewed as
“discrete” variables, and the tempo variables are the only
real continuous (hidden) variables. Such state-space mod-
els that involve both discrete and continuous hidden vari-
ables are called switching state-space models [17].

3.2.1 Marginal Likelihood of Labels

This section describes a generative model for the frame la-
bels, kN1 , (almost) equivalent to the generative model in
Section 3.1.1, but at the frame level. Using the chain rule,
we have

p(kN1) = p(k1)

N−1∏
n=1

p(kn+1|kn1) (7)

Following the assumptions in the frame-wise representa-
tion, there could be only two possible values for kn+1 in
each factor p(kn+1|kn1): the same as kn if it “decides” to
stay at the current note, or kn+1 if it “decides” to move on
to the next note. From Equation 4, we know that the onset
of the pending note kn + 1, given all previous onsets okn1

(equivalent to kn1), has a density function

p(okn+1|okn1) = (8)

N(okn+1; okn + lknµt(o
kn
1), σ2

ε,kn+1 + l2knσ
2
t (okn1))

Let’s write φ as the standard normal density, and define

f(x) = φ(
x− µ
σ

)

Then, the density in Equation 8 is f(okn+1), where

µ = okn + lknµt(o
kn
1)

σ =
√
σ2
ε,kn+1 + l2knσ

2
t (okn1)

We can use this density function to compute
p(kn+1|kn1) with two cases:

p(kn+1|kn1) =

{
p1, kn+1 = kn (same note)

1− p1, kn+1 = kn + 1 (new note)

(9)

We can focus on calculating the first case, and the second
case has the complimentary probability. In the first case
where it stays in the same note at frame n+1, the informa-
tion we know is that the onset of the next note will be after
frame n+ 1, given we already know that the onset must be
after frame n. Therefore, p1 is a conditional probability:

p1 = P (okn+1 > (n+ 1)∆ | okn+1 > n∆ , okn1) (10)

Writing Φ as the cumulative distribution function of φ, we
have

p1 =
1− Φ(c+∆−µ

σ)

1− Φ(c−µσ)
(11)

where c = (n + 1)∆. Therefore, we can calculate the
probability of any label sequence p(kN1) iteratively as in
Equation 7, by using Equation 9.

3.2.2 Note Duration and Note Age

In Equation 9, p(kn+1|kn1) is calculated based on
f(okn+1), the distribution of the onset for the pending
note. In this section, we introduce two variables—note
duration and note age—and calculate p(kn+1|kn1) from a
slightly different perspective.

The duration of the kth note is the difference between
its two adjacent onsets:

Lk = ok+1 − ok = lktk + εk+1

Given the previous onsets, Lk also has a Gaussian dis-
tribution with its mean as lkµt(ok1) and its variance as
σ2
ε,k+1 + l2kσ

2
t (ok1). In the frame-wise representation, a

note’s duration, Lkn , has additional requirements that it
should be multiples of ∆, and be at least ∆ (milliseconds)
long. Let’s define a note’s age as the number of frames this
note has been through so far at the nth frame, denoted as
an. The age of the note kn can be calculated by

an = n− okn/∆ + 1

To get p1 in Equation 9, we can rewite Equation 11 from
the angle of the note length: given that this note has lasted
an frames, what’s the probability of it lasting for at least
an + 1 frames. It can be expressed as

p1 = P (Lkn ≥ (an + 1)∆ | Lkn ≥ an∆ , okn1)

=
1− Φ((an+1)∆−µ

σ)

1− Φ(an∆−µ
σ)

(12)

where µ = lknµt(o
kn
1) and σ =

√
σ2
ε,kn+1 + l2knσ

2
t (okn1).

4. COMPUTATION

The number of possible label sequences grows exponen-
tially with n, as in the tree structure in Figure 4. This
section discusses the computational aspects of the model:
what is the filtered probability of the hidden variables,
given all observed audio data up to the current frame; how
to reasonably approximate the calculation so it is tractable.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

695

4.1 Tree Representation

The tree in Figure 4 represents all possible label sequences,
{kN1 }. At any frame n, each node has a label for its note
index, kn, and also includes the age information of the
note—the number of frames it has been through so far—
denoted by an. From a label sequence kn1 , we can thus
determine the age sequence an1 , and vice versa. The tree
includes the age variable because we need it in the genera-
tive model (see Equation 12). A node has two children: left
means it stays in the same note and thus the age increases
by one frame, and right means it moves on to the next note
and thus the age resets to 1. Any node in the tree actually
represents a label sequence by the path from the root to the
node. For example, the dotted line in Figure 4 represents
the label sequence of k6

1 = 011122 (or the age sequence
of a6

1 = 112312). A path can be viewed as a sequence of
decisions of choosing the left or right branch, from the root
node at frame 1 to the end node in the path.

Figure 4. Exponential growth of label sequences. Each
node has three aspects: note index label, age of this note
(in square brackets), and distribution of the tempo. Tempo
distributions at onset nodes are drawn with thicker lines.

For every node in the tree, denoted by its path of kn1 ,
we can calculate two probabilities: the discrete probability
of arriving at this node, p(kn1), and the continuous prob-
ability distribution of the tempo at this node, p(tkn |kn1).
As discussed before, the tempo has a Gaussian distribution
(drawn besides the nodes in the first four frames in Fig-
ure 4), given the path leading to this node. A Kalman fil-
ter keeps track of the tempo down the path, and updates
its distribution when and only when the path chooses a
right branch (drawn with thicker lines), i.e., whenever it
observes a note onset (discussed in Section 3.1).

The probability of arriving at a node, p(kn1), according
to the frame-wise generative model, can be iteratively cal-
culated by p(kn1) = p(kn−1

1)p(kn|kn−1
1). Thus, p(kn1) can

be calculated from two parts: the probability of arriving at
its parent node, p(kn−1

1), and the probability of choosing
the left or the right branch when transitioning from frame
n− 1 to frame n, p(kn|kn−1

1). We can use either Equation
11 or Equation 12 to calculate the latter, and both equations
require the distribution of the tempo at the parent node,
p(tkn−1

|kn−1
1)—or equivalently, p(tkn−1

|okn−1

1).
Adopting the iterative nature of the calculation, we can

compute the probability of (arriving at) every node and its

tempo distribution, frame by frame starting from the root.
Since the tree includes every possible label sequence, those
probabilities give us p(kn1) for all {kn1 }, n = 1, . . . , N .

4.2 Conditioning on data

This section continues to focus on calculating the prob-
ability of arriving at a node in the tree, but now condi-
tioned on the observed audio data up to the current frame—
p(kn1 |yn1). Considering yn1 ensures that sequences more
consistent with the observed data would receive higher
probabilities than the rest, helping identify more likely se-
quences. On the other hand, the tempo will not be affected
by the observed data since the tempo distribution at a node
depends only on the corresponding label sequence, i.e.,
p(tkn |kn1 , yn1) = p(tkn |kn1), as used later in Equation 13.

The audio frame data y1, . . . , yn are assumed to be con-
ditional independent from each other given the frame la-
bels k1, . . . , kn, so we can have

p(kn1 |yn1) =
1

Zn
p(kn1 , y

n
1)

=
1

Zn
p(kn1)p(yn1 |kn1)

=
1

Zn
p(kn1)

n∏
i=1

p(yi|ki)

Zn = p(yn1) =
∑
{kn1 }

p(kn1 , y
n
1)

The joint probability p(kn1 , y
n
1) can be calculated itera-

tively from p(kn−1
1 , yn−1

1) by

p(kn1 , y
n
1) = p(kn−1

1 , yn−1
1)p(kn|kn−1

1)p(yn|kn)

The calculation of the middle factor p(kn|kn−1
1) is dis-

cussed in Equations 9, 11, and 12, which involve using
the tempo distribution of p(tkn−1 |kn−1

1). The third factor
p(yn|kn) is the data likelihood of the nth frame, discussed
in Section 2. Therefore, we can calculate p(kn1 , y

n
1) for ev-

ery node in the tree iteratively from frame 1 to frame N.
To get the filtered probability of p(kn1 |yn1), we simply nor-
malize p(kn1 , y

n
1) with Zn at every frame. In sum, with the

help of the data model factors
n∏
i=1

p(yi|ki), we should be

able to distinguish the sequences better by using p(kn1 |yn1)
instead of p(kn1): hypothesized sequences that are closer
to the true sequence should have larger values of p(kn1 |yn1)
than those of sequences further from the truth.

4.3 Filtering with Approximation

The task of filtering is to compute p(kn, tkn |yn1): the joint
distribution of the last hidden states in the sequence, given
the sequence of observed data so far. Writing K(kn) as the
set of all label sequences in Figure 4 that are n-label long
and end with kn, this filtered probability is:

p(kn, tkn |yn1) =
∑

kn1 ∈K(kn)

p(kn1 , tkn |yn1)

=
∑

kn1 ∈K(kn)

p(kn1 |yn1)p(tkn |kn1) (13)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

696

This is a Gaussian mixture distribution with |K(kn)| com-
ponents. Without approximation, the computation is in-
tractable because |K(kn)| grows exponentially with n.

In Figure 4, there are duplicated nodes in terms of “la-
bel[age]” at every level (except for the first three levels),
and these duplicates have the same subtree. The idea for
simplifying the computation is to merge any duplicates at
the same level into one node, as in Figure 5. The merged
node then has the summed probability:

p(merged node) =
∑

nodes
p(nodei)

Each node in the frame-wise model also carries a Gaussian
distribution for the tempo. The merged node would then
carry a Gaussian mixture distribution:

p(tmerged) =
∑

nodes

p(nodei)
p(merged node)

p(t | nodei)

As more and more merging operations happen over time,
the number of components in a tempo distribution grows
exponentially, with each component corresponding with
a possible label sequence, and the problem remains in-
tractable. We can solve this by using moment matching:
approximating a Gaussian mixture with a single Gaussian
that has the same mean and variance as the mixture. This
is proven to be the optimal approximation in the sense of
Kullback-Leibler distance [18]. This approximation is rea-
sonable if the components with larger weights are close to
each other (agreeing with each other) in terms of mean and
variance, and if those further away have smaller weights,
thus could be ignored anyway. It’s reasonable to believe
that reality more often reflects this case, because unlikely
nodes tend to have smaller probabilities and thus smaller
weights in the mixture (thus should be ignored anyway),
while more likely nodes tend to have more similar opin-
ions about the tempo because they lean towards the truth.

Figure 5. Limiting tree growth by merging nodes with
the same label and age. The first merge happens at frame
#4, when the right child of 1[1] and the right child of 1[2]
(at frame #3) merges into one node. This merged node’s
tempo has a Gaussian mixture distribution with two com-
ponents from the two copies of the 2[1], and is approxi-
mated by a single Gaussian (thicker blue line). The two
merges at frame #5 have similar approximations.

Under this strategy, it’s guaranteed that a left child
has no duplicates at a frame. All left children’s ages are

at least two (frames), because they represent continuing
notes. Merging nodes are always the right children of their
parent nodes, and these nodes always have the age of 1.
For nodes identified as kn[1] at frame n, their parent nodes
must have the label of kn−1 and could have the age of 1, 2,
. . . , n− kn from frame n− 1. Therefore, there are n− kn
copies of nodes kn[1] being merged together at frame n.
It’s worth noting that the size of the merging group, n−kn,
could be 1, which means there is no merging happening.

Distinguishing those two cases, we can iteratively ap-
proximate the discrete filtered probability of the label and
the age, p(kn, an|yn1), and the continuous filtered probabil-
ity of the tempo, p(tkn |kn, an, yn1). From previous discus-
sions, we know that p(tkn |kn, an, yn1) is always a single
Gaussian (after approximation), and we write its mean and
variance as µn = µ(kn, an, y

n
1) and σ2

n = σ2(kn, an, y
n
1).

The discrete and the continuous filtered probabilities
can be iteratively calculated as follows in two cases. In
the case where it stays in the same note, so kn = kn−1 and
an > 1, there is only one parent node (without merging):

p(kn, an|yn1) =
1

Wn
p(kn, an, yn|yn−1

1)

=
1

Wn
g(kn−1, an−1, kn, an, y

n
1) (14)

g(kn−1, an−1, kn, an, y
n
1) = (15)

p(kn−1, an−1|yn−1
1)p(kn, an|kn−1, an−1, y

n−1
1)p(yn|kn)

Wn = p(yn|yn−1
1) =

∑
{kn,an}

p(kn, an, yn|yn−1
1)

The middle factor in Equation 15 has been discussed in
Equations 9 and 12, and the third factor is the data model.
The filtered tempo in this case doesn’t change, i.e.,

p(tkn |kn, an, yn1) = p(tkn−1
|kn−1, an−1, y

n−1
1) (16)

In the other case where it transitions to the next note,
so kn = kn−1 + 1 and an = 1, the only difference for
the discrete filtered probability is that there is a merging
process represented by the summation operation:

p(kn, an|yn1)=
1

Wn

∑
1≤an−1

≤n−kn

g(kn−1,an−1,kn, an, y
n
1) (17)

The filtered tempo becomes a Gaussian mixture:

p(tkn |kn, an, yn1) (18)

=
1

p(kn, an|yn1)Wn

∑
1≤an−1

≤n−kn

g(kn−1, an−1, kn, an, y
n
1) ·

p(tkn |okn = n, okn−1
=n−an−1, µn−1, σ

2
n−1)

The last term can be calculated by the Kalman filter in Sec-
tion 3.1. We further approximate the above Gaussian mix-
ture using a single Gaussian with the mean as µn and the
variance as σ2

n. Putting Equations 14-18 together, we can
iteratively calculate p(kn, an, tkn |yn1) by

p(kn, an, tkn |yn1) = p(kn, an|yn1) p(tkn |kn, an, yn1)

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

697

5. PRELIMINARY EXPERIMENTS

5.1 Data Set

In score-following , the ground truth is the note onset times
in the performance audio. This is usually difficult to obtain
without tedious work of hand labeling or correction. One
idea is to record the performances on pianos that capture
movements of the keys, hammers and pedals, and store the
information in MIDI files (e.g., Disklavier pianos). We
can infer the note onsets from a MIDI file fairly easily.
The MAESTRO data set by [19] contains such audio and
MIDI data from 172 hours of piano performances from the
International Piano-e-Competition [20].

The preliminary experiments contained 50 excerpts of
real performances from 14 solo-piano pieces, as shown in
Table 1. A typical excerpt lasted from 40 sec. to 90 sec.,
making the entire data set 48 min. of music. About 33
min. of it was from the MAESTRO, and the rest from the
publicly available music recordings on the Internet. In the
former case, we matched the performance MIDI data with
the digital score according to the minimum-edit-distances
criterion, with some minor manual corrections. For the lat-
ter case, we ran an offline audio-to-score algorithm which
generated “close to perfect” results, and then manually cor-
rected them. The audio data, along with a detailed de-
scription of the measures in these pieces are available at
http://music.informatics.indiana.edu/papers/ismir20/.

Composer Piece #Excerpts
Mozart Piano Concerto No. 17 in G major, mvmt1 3
Schumann Piano Concerto in A minor, mvmt1 3
Chopin Barcarolle, Op. 60 2
Chopin Prelude, Op. 28 No. 4 2
Chopin Ballade No. 1 8
Liszt La campanella 5
Rachmaninoff Prelude, Op. 3, No. 2 5
Schubert Six Moments, D. 780 No. 2 1
Schubert Ständchen, D 957 No. 4 from Schwanengesang 4
Debussy Prelude, No. 2 (Voiles) 1
Debussy La fille aux cheveux de lin 3
Beethoven Piano Sonata No. 8 (Sonata Pathétique) 1
Beethoven Piano Sonata No. 31 8
Haydn Piano Sonata No. 24 in D major, mvmt1 1
Haydn Piano Sonata No. 24 in D major, mvmt2&3 3

Table 1. Piano music used in the experiments.

5.2 Evaluation Method

Write κ1, . . . , κN as the ground truth index labels of all
audio frames. At any frame, the probability of recognizing
the truth note is then the sum of the filtered probabilities
with the correct label (regardless of age), as in Equation 19.
The overall accuracy on an excerpt is the average across
all frames. This is called the frame-wise accuracy [14],
accounting for the accuracy of every frame.

Accn =
∑
kn=κn

1≤an≤n−κn+1

p(kn, an|yn1) (19)

Acc =
∑

n
Accn/N (20)

5.3 Results

The baseline algorithm for comparison was Music Plus
One [21], a state-of-the-art score-following systems, based
on a hidden Markov model. Both algorithms used 8kHz
sampling, 512-sample frame size (64 ms), and 128-sample
hop size. Both algorithms also deployed the beam search
technique to limit hypotheses at each frame to ≤200.

Out of the 50 excerpts, 12 excerpts had “very low” accu-
racies (< 40%) by at least one of the two algorithms. Very
low accuracy can either exemplify a fatal error, in which
the program got lost at certain frames, and never found its
way back, or it can mean high uncertainty among neigh-
boring chords. As shown in Table 2, the proposed method
failed exactly two times fewer than the baseline, and it also
had higher average accuracy among the failed excerpts.

baseline proposed
failed excerpts 11 9
average accuracy 15.1% 22.1%

Table 2. Counts of low-accuracy excerpts.

Excluding those 12 excerpts, we calculated the aver-
age overall accuracy across all of the other 38 excerpts,
as shown in Table 3. The proposed method achieved 4.1%
higher accuracy than the baseline. A p-value of .0096 (α <
.01) on a paired t-test indicates that the proposed method
is measurably better than the baseline.

baseline proposed
average accuracy 65.0% 69.1%

Table 3. Average accuracies of 38 excerpts.

6. DISCUSSION AND CONCLUSION

Piano music is one of the most challenging cases in the
score-following realm, as the preliminary experiments in-
dicate: the baseline algorithm failed on 22% of excerpts.
Further investigation suggests that the proposed method is
more robust than the baseline: fewer fatal errors, easier re-
covery from mistakes, and successful following even when
the performance tempo was far from the default tempo.
With this evidence and significantly improved accuracy on
successfully followed excerpts, we can speculate that treat-
ing the tempo as a variable helps the program adapt to un-
predictable performance variations, and that modeling the
tempo as smooth helps discriminate among hypotheses.

Although the dataset is not large enough to draw general
conclusions, the preliminary experiments showed strong
promise in the direction of tracking tempo while follow-
ing a score. The presented method here is general and can
be applied to a variety of instruments, monophonic or poly-
phonic. The tracked tempo information is also meaningful
for anticipating the next note in automatic accompaniment
systems, and is scalable to analyze the timing aspects of
large numbers of performances.

In conclusion, this paper presents an interesting new
method for improved score-following, and suggests a
promising direction for future research endeavors.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

698

7. REFERENCES

[1] A. Arzt, G. Widmer, and S. Dixon, “Automatic page
turning for musicians via real-time machine listening.”
in ECAI, 2008, pp. 241–245.

[2] R. B. Dannenberg and C. Raphael, “Music score align-
ment and computer accompaniment,” Communications
of the ACM, vol. 49, no. 8, pp. 38–43, 2006.

[3] A. Cont, “On the creative use of score following and
its impact on research,” in SMC, 2011.

[4] E. Schoonderwaldt, A. Askenfelt, and K. F. Hansen,
“Design and implementation of automatic evaluation
of recorder performance in IMUTUS,” in In Proceed-
ings of the International Computer Music Conference
(ICMC), 2005.

[5] A. Cont, “A coupled duration-focused architecture for
real-time music-to-score alignment,” IEEE transac-
tions on pattern analysis and machine intelligence,
vol. 32, no. 6, pp. 974–987, 2010.

[6] P. Cuvillier, “On temporal coherency of probabilistic
models for audio-to-score alignment,” Ph.D. disserta-
tion, Université Pierre et Marie Curie-Paris VI, 2016.

[7] C. Joder, S. Essid, and G. Richard, “A conditional ran-
dom field viewpoint of symbolic audio-to-score match-
ing,” in Proceedings of the 18th ACM international
conference on Multimedia. ACM, 2010, pp. 871–874.

[8] ——, “Hidden discrete tempo model: A tempo-aware
timing model for audio-to-score alignment,” in 2011
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2011, pp.
397–400.

[9] N. Montecchio and A. Cont, “A unified approach to
real time audio-to-score and audio-to-audio alignment
using sequential Montecarlo inference techniques,” in
ICASSP 2011: Proceedings of International Confer-
ence on Acoustics, Speech and Signal Processing.
IEEE, 2011, pp. 193–196.

[10] T. Otsuka, K. Nakadai, T. Takahashi, T. Ogata, and
H. Okuno, “Real-time audio-to-score alignment using
particle filter for coplayer music robots,” EURASIP
Journal on Advances in Signal Processing, vol. 2011,
no. 1, p. 384651, 2011.

[11] F. Korzeniowski, F. Krebs, A. Arzt, and G. Widmer,
“Tracking rests and tempo changes: Improved score
following with particle filters,” in ICMC, 2013.

[12] Z. Duan and B. Pardo, “A state space model for online
polyphonic audio-score alignment,” in 2011 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2011, pp. 197–200.

[13] C. Raphael, “Aligning music audio with symbolic
scores using a hybrid graphical model,” Machine learn-
ing, vol. 65, no. 2-3, pp. 389–409, 2006.

[14] Y. Jiang and C. Raphael, “Piano score-following by
tracking note evolution.” in SMC, 2019.

[15] K. Gröchenig, Foundations of time-frequency analysis.
Springer Science & Business Media, 2013.

[16] J. Durbin and S. J. Koopman, Time series analysis by
state space methods. Oxford university press, 2012.

[17] Z. Ghahramani and G. E. Hinton, “Variational learn-
ing for switching state-space models,” Neural compu-
tation, vol. 12, no. 4, pp. 831–864, 2000.

[18] A. R. Runnalls, “Kullback-Leibler approach to
Gaussian mixture reduction,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 43, no. 3, pp.
989–999, 2007.

[19] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-
Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and
D. Eck, “Enabling factorized piano music modeling
and generation with the MAESTRO dataset,” 2018.

[20] “International piano-e-competition,” http:
//piano-e-competition.com.

[21] C. Raphael, “Music Plus One and Machine Learning.”
in ICML, 2010, pp. 21–28.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

699

