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ABSTRACT

We propose and explore the novel task of dance beat track-
ing, which can be regarded as a fundamental topic in the
Dance Information Retrieval (DIR) research field. Dance
beat tracking aims at detecting musical beats from a dance
video by using its visual information without using its au-
dio information (i.e., dance music). The visual analysis
of dances is important to achieve general machine under-
standing of dances, not limited to dance music. As a sub-
area of Music Information Retrieval (MIR) research, DIR
also shares similar goals with MIR and needs to extract
various high-level semantics from dance videos. While
audio-based beat tracking has been thoroughly studied in
MIR, there has not been visual-based beat tracking for
dance videos.

We approach dance beat tracking as a time series clas-
sification problem and conduct several experiments us-
ing a Temporal Convolutional Neural Network (TCN) us-
ing the AIST Dance Video Database. We evaluate the
proposed solution considering different data splits based
on either “dancer” or “music”. Moreover, we propose a
periodicity-based loss that considerably improves the over-
all beat tracking performance according to several evalua-
tion metrics.

1. INTRODUCTION

One of core tasks of Dance Information Retrieval (DIR) 1

is to extract high-level semantics from dance videos, which
could be similar to what Music Information Retrieval
(MIR) tasks attempt to detect from music. For instance,
some common tasks among the two research fields are:
beat tracking, structure analysis, genre recognition, and au-
tomatic tagging. Although DIR shares similar objectives
with MIR, DIR tasks are typically solved by analyzing
video frames of dance motions (visual information). Of
course, those tasks could also be solved by analyzing au-
dio signals of dance music (audio information) when such

1 Dance Information Retrieval is almost the same as Dance Informa-
tion Processing [1] as Music Information Retrieval often means Mu-
sic Information Processing/Research, but in this paper we use the term
Dance Information Retrieval to focus on tasks analyzing dance informa-
tion, which could be either audio or video.
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Figure 1. Our approach for dance beat tracking.

signals are given or by analyzing both visual and audio in-
formation (multimodal information). As research on dance
motions has not yet received much attention in the MIR
community [1], the goal of this paper is to initiate dance
beat tracking as a novel DIR task. Dance beat tracking
is named to differentiate it from a standard task of music
beat tracking and is defined as the task of detecting mu-
sical beats by using only visual analysis of video frames.
Figure 1 shows an overview of our approach for dance beat
tracking.

Since dance motions are usually related to the accom-
panying dance music, several dance characteristics can be
inferred by joint analysis of motion and music. In fact,
various researchers have already worked on multimodal
aspects of dance music and motions [2–5]. In the MIR
community, dance music such as traditional dances [6–9],
electronic dance music [10–14], and ballroom dance mu-
sic [15–17] has been a popular target of research. The lit-
erature on analysis of dance motions by using only video
frames, however, is rather limited [1,18,19]. To the best of
our knowledge, no work has focused on dance beat track-
ing using visual information of dance videos and evaluated
its performance.

As music beat tracking is one of the most fundamen-
tal MIR tasks, dance beat tracking is also one of the most
fundamental DIR tasks. Beat is the basic unit of time
and can be used as a basis for further processing. For
example, beat-synchronous analysis is effective and fre-
quently used in the MIR community: music audio sig-
nals and dance videos could be divided into temporal sec-
tions associated with beats, which are then used to ob-
tain beat-synchronous or beat-wise representations for var-
ious higher-level tasks [20–24]. Some direct applications
of dance beat tracking systems would include automatic
synchronization of dancing with music. Although dance
videos usually have video frames synchronized with mu-
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sic audio signals, there are irregular video files such as
those in which the timing of video frames is out-of-sync
with audio signals, and those in which a dancer is dancing
without music or at different tempi. Dance beat tracking
is useful for synchronizing and temporally-aligning (time-
stretching) such video frames, or even identifying such
out-of-sync videos.

Whether it is possible to automatically track beats of
a dance video using only video frames is an open ques-
tion [25]. To answer this question, we developed a dance
beat tracking system that extracts skeletal body keypoints
of a dancer from each video frame and uses Temporal Con-
volutional Neural Network (TCN) architectures to clas-
sify each frame as either a “beat” frame or a “non-beat”
frame. In our experiments with a shared large-scale dance
database, the AIST Dance Video Database [1], we found
that it is possible to achieve dance beat tracking with the
best F-measure performance of 61.20% and there is still
large room for improvement. We also found that TCN ar-
chitectures are more effective than architectures based on
bidirectional Long Short-Term Memory (LSTM) Recur-
rent Neural Networks (RNNs), and that the use of an ad-
ditional loss term based on periodicity, which we propose
in this paper, considerably improves beat tracking perfor-
mances.

2. RELATED WORK

2.1 Audio-based music beat tracking

Initial work on music beat tracking for audio signals
was based on spectral features, such as onset strength.
By relying on these features, previous studies proposed
multiple beat tracking agents [26, 27]. Further research
on beat tracking was based on a dynamic programming
framework [28–30]. Moreover, solutions based on the
Kalman filter for detecting the beat locations were stud-
ied as well [31, 32]. Another popular way of approaching
beat tracking was through the bar pointer model, originally
proposed by Whiteley et al. [33], and improved by oth-
ers [34, 35].

More recently, beat tracking research has largely
adopted deep learning models to predict the beat positions,
mainly by means of RNNs. The core idea of these deep
learning solutions is to feed spectrogram frames, or fea-
tures extracted from them, into an LSTM RNN. The net-
work outputs the beat activation function, which is post-
processed, usually by HMM decoding, to obtain the final
beat locations. Previous work which adopted this process-
ing setup is described in the papers of Durand et al. [36],
Krebs et al. [37], Böck and Schedl [34], Böck et al. [38],
and Cheng et al. [39].

RNN architectures have recently started to be replaced
by more computationally efficient deep learning models
such as Temporal Convolutional Networks (TCNs) [40,
41]. TCNs have also been used for beat tracking, as in
the papers of Davies and Böck [42] and Böck et al. [43].

2.2 Visual or multimodal dance analysis related to
beats

Guedes et al. [44] developed Max/MSP objects to con-
trol the tempo and rhythm of a music performance by us-
ing dance movements instead of a conducting baton. Al-
though those objects extracted musically relevant rhythmic
information from the video frames, they did not detect any
dancer and their purpose was different from dance beat
tracking. Ho et al. [45] developed a multimodal system
that evaluated a street dance performance by estimating
how well dance motions from a Kinect device correlated
with musical beats. The system detected motion velocity
drops as candidate motion beats, which did not necessarily
have regular intervals, and then evaluated the synchroniza-
tion between their candidates and musical beats.

Automatic dance motion generation for artificial char-
acters, such as robot dancers and computer-graphics an-
imation dancers, often needs beat-related audio-visual
dance analysis. Ohkita et al. [46] presented a multimodal
audio-visual beat tracking algorithm that enabled a robot to
dance in synchronization with music and a human dancer.
Audio-visual features were also used in the work of Shi-
ratori et al. [47]. In their work, the authors proposed a
method that synthesized a robot dance performance imi-
tating the performance of a human dancer listening to the
same music.

In addition, Davis et al. [18] presented a method that
extracts visual rhythm from motions in video and aligns
it with its musical counterpart. Visual rhythm was also
at the base of a Xie et al. [48] article. In their work, the
authors extracted several features from video frames, and
proposed the use of an attention network to align them to
the correspondent audio onsets through sequence labeling
layers.

Although the above references do not directly deal with
the task of dance beat tracking, they show its potential ap-
plications.

2.3 Orchestra conductor analysis

In the work of Huang et al. [49] body movements of the
conductor were analyzed with the goal of inferring musical
expressiveness. The authors proposed a multi-task learning
model based on a bidirectional RNN to jointly identify dy-
namic, articulation, and phrasing cues of music from con-
ducting movements.

A similar study on orchestral director movement was
described in Schmidt et al. [50]. Musical beats were de-
tected in correspondence of a director’s hand’s velocity
peaks, where the movements were recorded by using a
wrist e-watch. The paper of Schramm et al. [51] also
focused on a director’s hand gestures acquired by Kinect
with the purpose of detecting duple, triple, and quadruple
patterns by using a probabilistic Dynamic Time Warping
framework.

Although motion analysis of dancers and conductors
could have some technical similarities, conductor motions
tend to give more explicit cues for musical beats. On the
other hand, since dancer motions do not necessarily corre-
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401



late with musical beats, dance beat tracking is harder than
conductor analysis in general.

3. PROPOSED SYSTEM

Inspired by the success attained in audio-based music beat
tracking, we address dance beat tracking as a sequence
classification problem. According to this framework, a
classifier takes as input a sequence of observations x1:T =
{x1, . . . , xT } , and produces an output of the same length
y1:T = {y1, . . . , yT } where each observation is classified
into “beat” (y = 1) or “non-beat” (y = 0), by taking into
account past observations. In our application each obser-
vation consists of a video frame.

Two main technical challenges of dance beat tracking
are modeling long time sequences and extracting mean-
ingful descriptors from video frames. The former chal-
lenge has been successfully tackled in recent years initially
by using RNNs and then by using TCNs [41]. TCNs, as
explained in Section 3.1, are deep learning architectures
based on stacks of causal dilated convolutions [40] which
serve the same purpose as an RNNs while offering several
advantages over them. TCNs are more computationally
efficient since convolutions can be easily parallelized. In
addition, TCNs do not suffer from exploding/vanishing of
gradients, which is a major drawback when dealing with
long time sequences such as the one used in this appli-
cation. The latter challenge can be dealt with by using
standard computer vision convolutional networks to extract
meaningful features from the video frames.

We thus chose to use a TCN as a sequence classifier.
From each video frame (60 fps) we extract the (x, y) po-
sition of dancer body keypoints by using the OpenPose
framework [52]. Thus, we represent a video as a sequence
of keypoints (Section 4.2). Although extracting the body
keypoints requires preprocessing of the dance video, we
found this description to be at the same time powerful for
effectively modeling dance movements. We do not directly
use video frame pixels since it is difficult to prepare a train-
ing dataset with sufficient variations of dancer clothes, col-
ors, and backgrounds, and using video frame pixels limits
generalization of the model.

3.1 Temporal convolutional networks

TCNs process the input xn by taking into account only the
past information, and produces an output yn of the same
length as the input. To achieve this goal, 1D causal 2 con-
volutional layers with the “same” padding 3 are used. In
order to model long time sequences, the network must have
a large receptive field. We therefore use a stack of dilated
convolutional layers so that we can increase the receptive
field while maintaining the same (small) kernel size of each
layer. Each layer of the stack has the same number of fea-
tures. The dilation factor increases in an exponential way

2 The result of the convolution at time t = T is obtained using inputs
at and before t ≤ T .

3 For a kernel h1, . . . , hM the “same” convolution padding length is
M − 1.

at each convolution stack. More precisely, at a particular
network level i, the dilation factor d is 2i.

Stacking more dilated convolutional layers to model
longer time sequences results in a deeper network, which
is harder to train. It has been shown that for very deep
networks, training on residual connections ensures a better
gradient flow which allows more effective training [53].

In our work we use a TCN in the configuration proposed
by Bai et al. [41]. The authors proposed a deep learning
architecture which is composed of several TCN residual
blocks. Each TCN residual block is composed of two di-
lated causal convolutional layers (of same dilation factor)
and Rectified Linear Units activation (ReLU [54]). In order
to accelerate the training of the model, a weight normal-
ization layer [55] is placed after each dilated causal con-
volutional layer. In addition, a spatial dropout layer [56]
is utilized after activations so that overfitting is mitigated.
Finally, an optional 1×1 convolution is used on the iden-
tity path to match the feature map size of the input to the
output when these two differ.

3.2 Network training

We train our model by using the Adam optimizer [57] with
default PyTorch parameters, a learning rate of 0.5× 10−3,
and batch size of 32. Training is stopped when the loss
on a validation dataset does not improve for subsequent 30
epochs. The best model is then selected according to the
best performance achieved on the validation dataset. For
data augmentation, Gaussian noiseN (0, 1) is added to the
keypoint delta values before feeding them to the network.

3.2.1 Loss function

The basic loss criterion used to train the network is the
cross-entropy, Lce. Giving an input sequence of M obser-
vations, for each observation m = 0, 1, . . . ,M − 1, the
model outputs a softmax distribution ŷm over two classes:
“beat” and “non-beat”. Since probabilities of “beat” and
“non-beat” in the ground truth are largely unbalanced,
we weight the cross-entropy loss with a weight vector w
of empirically chosen values: 1 and 0.1 respectively for
“beat” and “non-beat”. Thus, given a particular sample
pair n of true sequence y(n) and predicted sequence ŷ(n),
the weighted cross-entropy loss is defined as follows:

L(n)
ce = −w

M−1∑
m=0

y(n)
m log

(
ŷ(n)
m

)
. (1)

We also propose an additional loss term that takes ac-
count of periodicity, Lp. It is reasonable to assume that a
dance is characterized by repeating patterns which are cor-
related to the music beats. By using the periodicity loss we
inform the model that predictions made in correspondence
of multiples of the music tempo T should be considered
similar. In a training dataset the music tempo is known a
priori and constant throughout the audio clips. Note that
this additional loss term is used only during training. The
periodicity loss is simply the summation of the absolute
difference of predictions made at multiples of the music
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BPM Street Dance Genre
BR PO LO WA MH LH HO KR JS JB

T0 21 23 23 23 24 25 23 23 21 22
T1 23 23 23 23 24 23 23 23 23 24
T2 23 24 23 24 24 23 24 23 23 22
T3 23 24 23 24 23 24 24 25 21 23
T4 24 23 25 23 23 23 23 23 23 23
T5 24 24 24 24 23 23 22 24 23 24

Table 1. Video counts of the AIST Dance Video Database
subset used in our work.

tempo kT :

L(n)
p =

∥∥∥∥∥∥∥∥∥∥
Nb−3∑
k=0

k′=k+1
k′′=k′+1

ŷ
(n)
kT :k′T − ŷ

(n)
k′T :k′′T

∥∥∥∥∥∥∥∥∥∥
1

, (2)

where Nb is the number of beats contained in the ground
truth sequence. The output sequence is zero-padded to a
multiple of ground truth tempo.

We get the total loss by adding together the weighted
cross-entropy and a scaled version of the periodicity loss.
The scale parameter α is empirically chosen by grid-
search. Finally, we take the average among the training
batch of N samples:

L =
1

N

N−1∑
n=0

L(n)
ce + αL(n)

p . (3)

4. DATASET AND DATA PROCESSING

The AIST Dance Video Database [1] is a large-scale col-
lection of dance videos. This database includes 10 street
dance genres: “Break” (BR), “Pop” (PO), “Lock” (LO),
“Waack” (WA), “Middle Hip-Hop” (MH), “LA-style Hip-
Hop”(LH), “House” (HO), “Krump” (KR), “Street Jazz”
(JS), and “Ballet Jazz” (JB). For each dance genre, 6 mu-
sical pieces of different tempi are used. In particular, the
music tempi are: T0 = 80, T1 = 90, T2 = 100, T3 = 110,
T4 = 120, and T5 = 130 beats per minute (bpm) for all
the genres, except the “House” genre whose tempi are :
T0 = 110, T1 = 115, T2 = 120, T3 = 125, T4 = 130, and
T5 = 135 bpm.

In this work we consider dance videos where a sin-
gle dancer is performing (“Basic Dance” and “Advanced
Dance” in the database), and we use the frontal camera as
the source of information 4 . The total number of dance
videos considered in our experimental evaluation is 1396.
The resolution of the videos is 1920×1080 pixels. Table 1
shows a detailed breakdown of our dataset.

4.1 Data splits

We split the data according to “music” and “dancer”.
For each of the split configurations, we randomly split

4 The frontal view of the dancer is the most reliable for detecting the
body keypoints because body part occlusions are minimized by this visual
perspective

the data samples in training, validation, and test datasets
with percentages of 70 %, 20 %, and 10 %, respectively.
In order to make balanced splits, we adopt the follow-
ing strategy. In the case of the “music” data split, for
each of the 60 music clips, we select the correspondent
videos, and randomly split them according to the afore-
mentioned train/validation/test percentages. We then con-
catenate the individual micro splits to obtain the final “mu-
sic” train/validation/test splits. The same process is exe-
cuted according to the individual dancer for compiling the
“dancer” data splits.

4.2 Data preprocessing

All the dance videos are preprocessed by extracting the
body keypoints by using the OpenPose framework [52].
We use the BODY_25 pose model which represents the
human body by 25 skeletal keypoints. However, in our
application a subset of the BODY_25 keypoints was prob-
lematic to detect with high reliability, and therefore it was
discarded from the body pose. These problematic key-
points correspond to “eyes”, “ears”, “nose”, “heels”, and
“big/small toe”. After removing these keypoints we end
up with a total of 13 keypoints: “neck”, “shoulders”, “el-
bows”, “wrists”, “mid hip”, “hips”, “knees”, and “ankles”.
However, missed detections of body keypoints can still
happen. The missed detections are recovered by spline in-
terpolation.

The body keypoints are defined by their pixel position
(x, y) within a video frame on the basis of the OpenPose
output. However, this representation has the drawback of
not being invariant to the dancer’s position and of being
dependent on the dancer’s body size. To overcome these
issues, we convert the absolute (xn, yn)(i) position of the
i-th keypoint at time n into its displacement (delta values)
in time:

(∆xn,∆yn)(i) = (xn − xn−1, yn − yn−1)(i). (4)

4.3 Beat activation processing

The output of network is the beat activation function; i.e.,
for each video frame, the model predicts its probability of
being a “beat” frame. To obtain the final beat positions, a
postprocessing of the beat activation function is required.
In our work we use the algorithm proposed by Krebs et
al. [35], which is based on HMM decoding.

5. EXPERIMENTAL SETUP

We report performance results by using several beat track-
ing metrics typical of music and by following the practice
described in Davies et al. [58]. For our experimental evalu-
ation, we make use of the mir_eval [59] software pack-
age 5 .

For the evaluation we consider the first 420 frames (7 s)
of each video. In addition, the first 1 s of the predicted beat
sequence is discarded when computing the performance re-
sults.

5 https://github.com/craffel/mir_eval
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5.1 Model selection

In order to select the best-performing configuration of
the model, we conduct hyperparameter grid-search on the
number of stacks Nstack ∈ {3, . . . , 12} and the number of
convolutional features Nfeat ∈ {32, 64, 128, 256}. Since
no pooling is involved in the TCN architecture, the num-
ber of convolutional features is kept constant among the
entire stack. The extreme values (minimum and maxi-
mum) of these hyperparameters are chosen in a way that
the model would respectively under-fit and over-fit the val-
idation dataset.

The training is stopped when the loss on the validation
dataset does not decrease for 30 successive epochs. Ac-
cording to the considered performance metric, the best-
performing model on the validation dataset is selected.
This model is then evaluated on the test dataset.

The hyperparameter grid-search reported that Nstack =
7 and Nfeat = 128 yields, in the majority of the cases,
the best TCN. The evaluation is done for both “dancer”
and “music” data splits. We denote this configuration as
TCN 7

128 and we use it as our baseline.

5.2 Periodicity loss ablation study

With the purpose of assessing the usefulness of the pro-
posed periodicity loss term (Lp), we conduct an ablation
study using TCN 7

128 as the baseline.
Additional hyperparameter grid-search is done for find-

ing the best value of α, see equation (3). This parameter
weights the contribution of Lp to the overall loss and must
be carefully chosen by empirical evaluation. The tested
values are: α ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. The
grid-search is done for both “dancer” and “music” data
splits by training the TCN 7

128 according to the procedure
previously described.

6. EXPERIMENTAL RESULTS

In the first part of this section we report the baseline per-
formance of TCN 7

128. We also compare the baseline per-
formance between TCN and LSTM architectures and show
that the TCN architecture is the best in our application. Fi-
nally, we elaborate on the results of the ablation study of
the periodicity loss term by showing its effectiveness.

We report the performance in terms of different metrics.
More specifically we consider: F-measure (F), Cemgil’s
score (Cem), and continuity base scores [58]. The con-
tinuity scores are: Correct Metrical Level continuity re-
quired/not required (CMLc/t), and Allowed Metrical Level
continuity required/not required (AMLc/t).

6.1 Baseline loss

Table 2 reports the performance results of TCN 7
128 model

trained with Lce. Results are subdivided according to the
“dancer” and “music” data splits and are reported as per-
centages correct.

Examining the overall results, we acknowledge at first
look the difficulty of this new task. A similar conclusion

Split CMLc CMLt AMLc AMLt Cem F

Dancer 44.28 46.93 47.27 49.04 52.92 55.02
Music 40.14 39.71 44.84 47.53 47.43 53.02

Table 2. TCN 7
128 results trained with the baseline loss.

Split CMLc CMLt AMLc AMLt Cem F

Dancer 38.66 41.49 56.23 53.03 32.17 46.56
Music 27.62 32.45 43.13 46.32 28.35 39.18

Table 3. bLSTM 4
128 results trained with the baseline loss.

about music beat tracking is drawn in when percussion is
not present in the analyzed audio signal. We find that in a
dance, the body movements cannot stress the tempo as effi-
ciently as percussive sounds do. Therefore, a lower perfor-
mance is reasonably expected in dance beat tracking than
in music beat tracking (Section 6.3).

In addition, we notice that the performance on the
dancer data split is ≈ 4 % higher (for all the metrics) than
the performance on the music data split. The dancing style
that characterizes each dancer seems to be easier to capture
by the network, while the difference in choreographies for
the same music piece is less effectively captured by the
model.

In more detail, for both of the data splits, we see that
the continuity scores obtain lower performance. Specifi-
cally, CML is the least performing metric and is followed
by AML. The performance gap between CML and AML
(≈ 3 % for dancer and ≈ 6 % for music) suggests that the
model tends to detect beats at half or double the correct
tempo. An improvement of CML/AML scores is achieved
when continuity is not required (CMLt and AMLt). The
F-measure attains the highest performance for both of the
data splits, while the Cemgil’s score shows a slight de-
crease, which is more evident for the music data split. This
performance decrease indicates that the model tends to de-
tect beats with a slight offset with respect to the ground
truth position.

The main conclusions of this experimental section are
as follows. (1) Detecting beats is more difficult for the
“music” split. (2) Detected beats are prone to errors such
as beat positions with less continuity, with a half or double
tempo, and with a small deviation from the correct beats.

6.1.1 Comparison with LSTM

We provide a baseline comparison with a bidirectional
LSTM RNN, whose performance results are reported in
Table 3. Also in this case, we conduct similar hy-
perparameter grid-search as done for the TCN. In par-
ticular, we tested Nstack ∈ {1, 2, . . . , 6} and Nunits ∈
{32, 64, 128, 256}, and found that in average for the dif-
ferent performance metrics, the best performing configu-
ration is Nstack = 4 and Nunits = 128. We refer to this
model specification as bLSTM 4

128.
From Table 3 we notice that for both “dancer” and “mu-

sic” data splits the bLSTM 4
128 performs worse than the
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Loss CMLc CMLt AMLc AMLt Cem F

Lce 44.28 46.93 47.27 49.04 52.92 55.02
Lce+αLp 53.05 54.30 55.23 57.64 59.02 61.20

Table 4. Performance results for the “dancer” data split
using the proposed loss with α = 0.05.

Loss CMLc CMLt AMLc AMLt Cem F

Lce 40.14 39.71 44.84 47.53 47.43 53.02
Lce+αLp 46.50 48.33 48.27 50.87 54.27 58.25

Table 5. Performance results for the “music” data split
using the proposed loss with α = 0.1.

TCN 7
128 in terms of almost all the considered metrics. The

performance gap is quite significant for Cemgil’s score and
the F-measure. Notably, the AML scores are comparable,
or even better (“dancer” split), than the TCN. In this par-
ticular instance, the recurrent nature of the tested model is
helpful in detecting beat locations that are regularly spaced
according to musical metric (half/double).

6.2 Proposed loss

From Tables 4 and 5 we assess the benefit introduced by
the proposed periodicity loss term. Indeed, the proposed
loss considerably improves each of the performance met-
rics and does so for both of the data splits. The improve-
ment averages≈ 7.5 % points for the dancer split and about
≈ 5.5 % points for the music split. We found by means of
grid-search that the best value for the hyperparameter α is:
0.05 for the “dancer” split and 0.1 for the “music” split.

The performance gap between “dancer” and “music”
data splits is also present in this case. Moreover, a simi-
lar trend of the performance scores also occurs in the com-
bined loss experiments. In fact, sorted in ascending or-
der of the achieved performances, the metrics are: CML,
AML, Cemgil’s score, and F-measure.

In the case of the “dancer” data split (see Table 4), the
continuity metrics are the most improved metrics. With
an improvement of ≈ 8 % points, the periodicity loss term
is beneficial for detecting beats at the correct time spacing.
Although less improved, Cemgil’s score and the F-measure
still indicate an important boost in performance by ≈ 6 %
points. This means that the proposed loss is helpful for
obtaining more accurate detection of beats.

In the case of the “music” data split (see Table 5), the
performance improvement, although slightly less evident
than in the case of the dancer split, is still consistent. For
the music data split, the proposed loss improves all the per-
formance metrics by an average of≈ 5.5 % points. The be-
havior similar to the results of the dancer data split is also
observed in this case. However, for the music data split we
see that improvement for AML metrics is relatively low:
≈ 3 % points. In this case CML and AML results are more
aligned, with the latter being ≈ 2 % points better.

To summarize, the main conclusions of this experimen-

CMLc CMLt AMLc AMLt Cem F

81.34 81.34 94.27 94.89 73.78 88.98

Table 6. Average performance results on the audio clips.

tal section are as follows. (1) The proposed loss based on
periodicity improves performance considerably. (2) The
proposed loss helps in detecting beat locations which are
more aligned with the correct music metric (or half/double
of it). (3) The performance gap between the two data splits
is still present, although slightly mitigated.

6.3 Audio-based music beat tracking

In Table 6, we report the beat tracking performance
achieved on the audio clips of the AIST Dance Video
Database [1] for comparison. We use the model of Böck et
al. [34] in combination with the same HMM postprocess-
ing module used for dance beat tracking.

Since the results are much better than those in Tables 4
and 5, music beat tracking is an easier task than dance beat
tracking in our experiments. This is expected since the
audio clips chosen for the dancing purpose have usually
distinctive beats.

7. CONCLUSION

Our main contributions are as follow. (1) We propose the
task of dance beat tracking which is characterized by the
novelty of using visual information, in the form of mo-
tion patterns, for detecting musical beats. (2) We provide a
baseline evaluation on the AIST Dance Video Database [1]
considering data splits based on “music” and “dancer”. By
comparing the results based on those data splits, we gain
deeper insights about the dance beat tracking task. In ad-
dition, we also provide a performance comparison of deep
learning architectures commonly used for time series clas-
sification. In this regard, we show that TCNs outperform
bidirectional LSTMs for dance beat tracking. (3) We pro-
pose the periodicity loss term, which is scaled and added to
the baseline cross-entropy loss. This novel loss term takes
into account motion repetitions in relationship to beats and
considerably improves the beat tracking performance.

Detecting musical beats from video frames revealed to
be a challenging task, and it encourages further research
in this direction in order to improve the performance re-
sults. In fact, the relationship between dancer body move-
ments and musical beats is difficult to capture due to high
variability of motion patterns among different dancers and
different choreographies. This challenge is similarly faced
in MIR when trying to detect beats from non-percussive
music. In future work we plan to investigate deep learning
architectures that can directly process video frames with-
out needing to extract the body keypoints ahead of time.
Future work will also include investigation of whether it
is possible for human beings to visually track beats of a
dance video without listening to the accompanying sounds,
and will compare machine and human performances.
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