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ABSTRACT

In this paper, we propose the use of speaker embedding
networks to perform zero-shot singing voice conversion,
and suggest two architectures for its realization. The use
of speaker embedding networks not only enables the capa-
bility to adapt to new voices on-the-fly, but also allows for
model training on unlabeled data. This not only facilitates
the collection of suitable singing voice data, but also allows
networks to be pretrained on large speech corpora before
being refined on singing voice datasets, improving network
generalization. We illustrate the effectiveness of the pro-
posed zero-shot singing voice conversion algorithms by
both qualitative and quantitative means.

1. INTRODUCTION

Singing voice conversion (SVC) is the transformation of
a singing performance from one vocalist to that of an-
other. It can be used for creative manipulations of the
voice that go far beyond traditional time stretching and
pitch/formant shifting [1]. SVC methods must learn to dis-
entangle speaker content from acoustic features [2], while
accurately preserving input phonetic and pitch information
in the converted output. Relative to similar methods ap-
plied to speech, the singing voice exhibits a larger pitch
range and generally slower transitions between phonetic
units, which conversion networks must be able to accom-
modate for [3, 4].

Most approaches to SVC rely on some form of vocoder
which synthesizes vocal waveforms. The SVC task then
becomes one of transforming vocoder features from a per-
formance of a source singer to that of some target voice.
Unlike approaches to voice conversion on speech, which
usually leverage neural vocoders such as WaveNet [5] or
WaveRNN [6] as their back-end speech synthesizer, SVC
and singing synthesis algorithms tend to use hand-designed
vocoders such as WORLD [7] for acoustic modeling and
synthesis of the voice (with some exceptions, as in [8]).
This is because they explicitly separate pitch from timbral
components [3, 4, 9]. Accordingly, it is possible to learn
timbral transformations while preserving pitch, which is
not usually guaranteed when using neural vocoder [2].
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This may come at the expense of reduced expressivity rel-
ative to neural vocoders, but is considered to be acceptable
given its pitch-preserving characteristics [4].

Generative Adversarial Networks (GANs) [3,9,10] and
Variational Autoencoders (VAEs) [11] have become popu-
lar choices for learning transformations of vocoder features
for both SVC and singing synthesis. Different strategies
have been investigated to model several target voices, and
specifically, to adapt systems for new voices not seen dur-
ing model training. One such strategy involves assigning
a random embedding to the unseen voice, and resuming
model training on data of the unseen voice so as to update
this embedding and perform any necessary refinements to
the model [12, 13]. More recently, conversion algorithms
in the speech domain have used pretrained speaker embed-
ding networks designed for speaker verification tasks [14]
in order to encode speaker identity [15]. These approaches
have the advantage that, upon having trained the speaker
embedding network on many speakers, conversion algo-
rithms can be adapted to new voices in a zero-shot manner,
requiring no further training of the model and with as few
as one sample of an unseen voice.

In this paper, we adapt zero-shot voice conversion
methodologies [15] utilizing speaker embedding networks
for the application of SVC. We use the WORLD vocoder
and suggest two architectures for carrying out zero-shot
SVC. We show that the zero-shot nature of the algorithm
allows for SVC on unlabeled data. Moreover, we posit
that SVC systems are amenable to initial training on large
speech datasets which are more widely available, followed
by model adaptation on smaller singing voice datasets. To
the best of our knowledge, this is the first work to tackle
zero-shot SVC. Unlike singing synthesis algorithms, such
as [4, 10, 13], it does not require predefined annotations
of phonetic transitions or pitch, as this information is ex-
tracted from acoustic features of the source performance.

The remainder of this paper is structured as follows: We
suggest architectures for zero-shot SVC in Section 2. We
evaluate model performance via qualitative and quantita-
tive means in Section 3. Lastly, we draw conclusions and
allude to future work in Section 4.

2. SVC ALGORITHMS

We use the WORLD vocoder for analysis and synthesis
of singing voices due to its ability to separate timbral and
pitch components. Specifically, the system decomposes
a vocal signal into a harmonic spectral envelope and an
aperiodicity envelope, based on a tonality-gated estimate
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Figure 1. (a) Adapted AutoVC and (b) fixed encoder network architectures for zero-shot SVC.

of fundamental frequency. The conversion task primar-
ily involves transformation of the harmonic spectral en-
velope, leaving the aperiodicity envelope unchanged. As
in [4], we reduce the dimensionality of harmonic spectral
envelopes to 60 coefficients at each time step, using trun-
cated frequency warping in the cepstral domain with an
allpole warping coefficient α = 0.45 [16]. We consider
two different architectures for SVC, as illustrated in Fig-
ure 1, drawing inspiration from [2, 15, 17, 18].

2.1 AutoVC

The first architecture is an adaptation of the AutoVC archi-
tecture [15] for singing voice, which operates on harmonic
spectral envelopes extracted from WORLD (instead of Mel
spectrograms which are ultimately fed into a WaveNet
vocoder as in the original work). It is comprised of a
speaker embedding network Es(·) which takes as input a
Mel spectogram and generates a single fixed-dimensional
speaker embedding, a content encoder E(·) which takes as
input the harmonic spectral envelope and speaker embed-
ding from a source utterance and generates a latent encod-
ing, and a decoder network D(·) which constructs the con-
verted harmonic spectral envelope from a latent encoding
and target speaker embedding.

The input to the encoder is the harmonic spectral enve-
lopeX1 computed from a source utterance x1. This is con-
catenated with a source speaker embedding S1 = Es(X

′
1)

at each time step, where X ′1 is a Mel spectrogram of the

same or potentially different utterance x′1 from the same
source speaker. The encoder consists of a convolutional
prenet, comprised of three 1D convolutional layers with
512 output channels and kernel size 5, each followed by
batch normalization and ReLU activation. This result is
passed through two bidirectional LSTM layers with for-
ward and backward cell dimensions of 32, yielding an en-
coding of dimension 64. This is temporally downsampled
by 32, yielding the content encoding C1. The inclusion of
S1 in the encoder network helps the encoder to more easily
learn a speaker-independent encoding.

The decoder begins by upsampling the latent encod-
ing C1 to its original temporal resolution. Given the Mel
spectrogram X ′2 of some utterance x′2 from the same tar-
get speaker as the target utterance x2, the speaker embed-
ding S2 = Es(X

′
2) is concatenated with the upsampled

encoding. The concatenated features pass through a con-
volutional prenet similar to that in the encoder, followed
by three LSTM layers with cell dimension 1024. The out-
puts of the LSTM layer are linearly projected to dimension
60, serving as an initial estimate X̃1→2 of the converted
harmonic spectral envelope. This initial estimate is refined
by means of a convolutional postnet consisting of five 1D
convolutional layers of kernel size 5. Batch normalization
and Tanh are applied to the first four layers, and they each
output 512 channels. The final layer applies no activation
and outputs 60 channels. The converted harmonic spectral
envelope X̂1→2 is produced by adding the output of the
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postnet to X̃1→2.
During training, we set x1 = x2, S1 = S2, and accord-

ingly, X1 = X2, X̃1→1 = X̃1→2, and X̂1→1 = X̂1→2.
The objective function used for training AutoVC is

L =E[|X1 − X̂1→1|22] +
µE[|X1 − X̃1→1|22] +

λE[|E(X1, S1)− E(X̂1→1, S1)|1] (1)

The first term is the reconstruction loss between the orig-
inal and reconstructed harmonic spectral envelopes. The
second term is a reconstruction loss between the original
and initially estimated harmonic spectral envelopes, which
empirically helps model convergence. The third term is a
latent regressor loss [19] penalizing differences in encod-
ings between the original and converted harmonic spectral
envelopes. In practice, hyperparameters µ and λ can be set
to 1 [15]. The model is trained as an autoencoder, with the
hope that its bottleneck will be small enough to disentangle
speaker identity but large enough to allow for an accurate
reconstruction.

During inference, S2 can be set to the speaker embed-
ding of some target singer to perform a conversion. Given
a source pitch contour F1 extracted during WORLD anal-
ysis, the target pitch contour F2 should be adjusted to ac-
commodate the register of the target singer, and therefore,
F2 = F1 + F∆1→2. The pitch shift F∆1→2 can be deter-
mined automatically by measuring the median pitches of
source and target performances, and taking their difference
rounded to the nearest octave. The aperiodicity spectral en-
velope of the source performance X1,AP is used as is. The
converted audio waveform x̂1→2 is computed by feeding
the transformed harmonic spectral envelope, source aperi-
odicity spectral envelope, and target pitch contour F2 as
input to the WORLD synthesis engine.

2.2 Fixed encoder model

The second architecture is similar to AutoVC, but replaces
the encoder E(·) with a number of conditioning signals,
such as those found in [2]. By design, these conditioning
signals encode the input in a speaker-independent way us-
ing explicit features, akin to the timbre transfer networks
in [18]. We capture linguistic content using phonetic pos-
teriorgrams (PPGs) extracted from a phoneme classifier
Ep(·), as in [17]. The classifier passes 40 Mel frequency
cepstral coefficients (MFCCs) per frame through two bidi-
rectional LSTMs with 128 units per direction. A final
dense layer with softmax activation yields the classifier
output, which is compared to ground truth labels using a
categorical cross-entropy loss during training. We trained
the network on the TIMIT dataset [20], using its prescribed
training and test sets. The dataset consists of audio and
sample level timestamps of phonetic transitions from one
of 61 classes (including a silence class). The output of
the phoneme classifier is, therefore, a 61-dimensional vec-
tor at each time frame. The classification accuracy on the
test set is 65%, which is found to be sufficient to act as
a speaker-independent representation of linguistic content.

We extract loudness information (L) using the computa-
tional steps El(·) as in [21]. We compute an A-weighted
power spectrum, which puts greater emphasis on higher
frequencies. The result is aggregated across all frequen-
cies and converted to decibels to produce a loudness value
(in dbA) at each time step. Lastly, we include the target
pitch contour F2.

The decoder concatenates the target pitch contour F2,
P1 = Ep(x1), L1 = El(x1) with the target speaker em-
bedding S2. The inclusion of these different conditioning
signals attempts to account for timbral changes which may
vary as a function of the pitch and dynamics of a partic-
ular performance, while instructing the decoder of its un-
derlying linguistic content. The decoder network is almost
identical to that in AutoVC, except that we remove the up-
sampling operation as we no longer need to construct an in-
formation bottleneck for speaker disentanglement. We re-
fer to this architecture as the fixed encoder model, because
all conditioning signals are either computed without a neu-
ral network, or using a pretrained neural network whose
weights are frozen during the training of the decoder net-
work. The training objective is similar to that in Eqn. (1),
except that the third term is no longer applicable and is
therefore removed. Note that in this case, the source har-
monic spectral envelope X1 is never actually passed as in-
put to the network, but is used as a target for reconstruction
during training.

2.3 Architecture comparisons

We notionally discuss the potential advantages and disad-
vantages associated with the architectures proposed here.
The main advantage of the AutoVC architecture is that it
does not rely on a dedicated training set for extracting pho-
netic information. This information is learned by the en-
coder itself during model training. This could potentially
have better implications for cross-lingual applications, in
the case that the set of phoneme labels of a dataset itself
introduces a language bias [22]. It does, however, incur
some risk, as the encoder is solely responsible for learn-
ing all timbral variations in vocalization. It also requires
a temporal downsampling/upsampling of its encoding to
create an information bottleneck for speaker disentangle-
ment, which has some additional latency implications in
the decoder. The fixed encoder architecture is computa-
tionally less intensive, as the phoneme classifier is substan-
tially smaller than the encoder network in AutoVC. It also
avoids the need for temporal downsampling/upsampling.
The main disadvantages of this architecture is the reliance
on data to train a phoneme classifier, as well as the fact that
its expressivity is limited to that provided by its condition-
ing signals.

2.4 Universal Background Model (UBM)

While we could simply train SVC networks "from scratch"
on singing voice datasets, we consider leveraging the inter-
esting fact that the use of speaker embeddings for encoding
vocal identity (instead of one-hot labels) allows the sys-
tem to be trained on unlabeled data. Arguably, any "clean"

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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speech or singing voice clip could now be used for train-
ing SVC systems. It is generally understood that there is
significantly more speech data than their is singing voice
data for research purposes. Borrowing nomenclature from
the speech recognition community, an initial pretraining
on large speech corpora is like training a UBM [23] from
which other networks can be adapted for the more specific
SVC task. We would hope that such a model would serve
as a better initial condition for training a SVC network than
random weights, and that the resulting system would at the
very least generalize to more voices.

3. EXPERIMENTAL RESULTS

3.1 Experimental setup

Two datasets are used for training conversion networks in
this work. We use the VCTK corpus, which consists of
over 40 hours of speech from 109 speakers [24]. This cor-
pus serves as both a supervised speaker dataset to compare
performance between supervised and (unsupervised) zero-
shot networks, as well as a sufficiently large dataset for
training a UBM for further model fine tuning. As in [15],
we retain 90% of the data of each speaker for training, and
save the remainder as a test set. Additionally, we use a
proprietary and unlabeled dataset consisting of 7 hours of
singing voice data, which we simply call the SVC dataset.
Again, we retain 90% of the data for training, and save the
remainder as a test set. Note that the lack of labels in this
dataset poses no problem for zero-shot network training.

We make use of an open-source speaker embedding
network 1 pretrained to minimize the Generalized End-to-
End Loss [14]. This speaker embedding network gener-
ates a 256-dimensional speaker embedding from a 40-band
Mel spectrogram using an LSTM architecture and retain-
ing only the output from the final time step. During train-
ing, we use an entire utterance for x′1, whereas x1 is a 2
second cut from the same utterance. The speaker embed-
ding network and the phoneme classifier are pretrained and
frozen during the training of the conversion networks.

All models operate at 16 kHz with a frame rate of
12.5 ms, and were trained with a batch size of 2 using
the ADAM optimizer and a learning rate of 10−3. We
train four configurations for each model architecture de-
scribed here. The first configuration, VCTK (one-hot), is
trained on the VCTK corpus using the labels provided by
the dataset, which are converted to a one-hot representation
and fed as S1 to the network. This configuration serves
as a baseline to compare against its zero-shot counterpart.
The second configuration, VCTK (zero-shot), is trained on
the VCTK corpus using speaker embeddings for S1. The
first two configurations are each trained for 150,000 steps.
In the third configuration, SVC (zero-shot), we train zero-
shot architectures on the SVC dataset for 500,000 steps. In
the final configuration, VCTK→SVC (zero-shot), the sec-
ond configuration is used as an initial state, and training is
resumed for 350,000 steps on the SVC dataset (for a to-
tal of 500,000 steps). For audio examples, please visit the

1 https://github.com/CorentinJ/Real-Time-Voice-Cloning.

demo site 2 associated with this paper.

3.2 Performance assessment

We assess networks by both qualitative and quantitative
means. The main goal of this paper is to illustrate that
speaker embeddings networks can indeed be utilized for
training zero-shot SVC networks. Since we are unaware
of any other published methods for zero-shot SVC such
as the ones introduced here, and in order to provide some
form of comparative analysis, we focus our attention to an-
alyzing differences in results between the training config-
urations outlined here. For our quantitative evaluation, we
report the reconstruction loss for each network (the first
term in Eqn. (1)), which when computed on harmonic
spectral envelopes, effectively serves as a Mel cepstral dis-
tortion metric. For our qualitative evaluation, we con-
ducted surveys with 15 participants within our organization
who have some critical listening experience, and tabulated
mean opinion scores (MOS). We conduct separate surveys
for overall conversion quality and on similarity to the target
voice. While we provide examples from both architectures
in the supplementary material of this work, we restrict our-
selves to samples generated from training variants of the
fixed encoder architecture for subjective evaluations. The
first reason for this restriction is simply to minimize the
number of listening options so as not to overwhelm par-
ticipants taking part in the survey. The second reason is
because the inclusion of one-hot speaker labels for S1 in
the encoder network of AutoVC would require that input
source samples come from its closed speaker set. There-
fore, it is not practically possible to use the VCTK (one-
hot) training configuration on AutoVC on singing voice
examples without removing S1 from the network, leading
to a potentially unfair comparison.

The results of our quantitative analysis assessed on both
the VCTK and SVC datasets are shown in Tables 1 and
2, respectively. Across both architectures, we can confirm
that the replacement of one-hot labels with speaker embed-
dings does not dramatically hurt conversion performance.

AutoVC Fixed Encoder

VCTK (one-hot) 0.1837 0.1882
VCTK (zero-shot) 0.1634 0.1891
SVC (zero-shot) 0.2930 0.3590
VCTK→SVC (zero-shot) 0.2557 0.3232

Table 1. Reconstruction loss on the VCTK test set.

AutoVC Fixed Encoder

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 0.3007 0.4314
SVC (zero-shot) 0.1650 0.1959
VCTK→SVC (zero-shot) 0.1439 0.1850

Table 2. Reconstruction loss on the SVC test set.
2 https://sites.google.com/izotope.com/ismir2020-audio-demo
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In fact, we see that for the AutoVC architecture, VCTK
(zero-shot) actually outperforms VCTK (one-hot), while
offering the added functionality of zero-shot adaptation to
new unseen voices. This result is consistent with the find-
ings in [15]. We note that there is a significant degrada-
tion in performance assessed quantitatively when apply-
ing either VCTK (zero-shot) directly to singing voice sam-
ples, or when applying SVC networks directly to VCTK
samples, highlighting that there is indeed a mismatch be-
tween the speech and singing voice domains. There is a
consistent improvement when using our proposed adapta-
tion strategy, with VCTK→SVC (zero-shot) outperform-
ing SVC (zero-shot), both in the speech domain and more
importantly, in the singing voice domain of interest. Over-
all, the best performing approach for singing voice based
on this quantitative evaluation is AutoVC trained using
VCTK→SVC (zero-shot) training configuration, though
the computationally lighter, fixed encoder model does per-
form comparably well. It is worth noting that the VCTK
(one-hot) configuration is not applicable for evaluation on
the SVC dataset as it does not have the immediate ability
to adapt to new voices.

The results of our qualitative analysis, converting
singing voice performances using target voices from both
the VCTK and SVC test sets are shown in Tables 3 and 4,
respectively. First and foremost, we observe that speaker
embeddings networks can, in general, be used for zero-
shot SVC. We note that conversion networks trained on
speech can be used on singing voice, but they have some
trouble maintaining consistent spectral envelopes over pro-
longed vowels. Lastly, while not formally a part of the sub-
jective evaluation, we informally observe comparable per-
formance between architectures, with a preference towards
one architecture over the other on a per-case basis.

With target voices from VCTK, there is no remarkable
difference between networks trained using one-hot speaker
labels or using zero-shot speaker embeddings, but the lat-
ter naturally allows adaptation to new voices. While SVC
(zero-shot) is trained to be adapted to properties of singing
voice, it is trained on less data and has been exposed to
fewer voices. Though it was able to generate voices resem-
bling the VCTK target voices due to its zero-shot nature,
and worked comparably to other methods, it understand-
ably received the lowest MOS in this case. The networks
trained on the SVC dataset are more successful when us-
ing target voices from the SVC test set (and again, are
better adapted to the time scale of phonetic transitions in
singing). In this case, there is some degradation in quality
for the system trained using the VCTK (zero-shot) con-
figuration, and the VCTK (one-hot) configuration is not
even applicable. We again see an improvement for net-
works trained using VCTK→SVC (zero-shot) relative to
SVC (zero-shot) in this scenario. In fact, the VCTK→SVC
(zero-shot) training configuration outperforms other meth-
ods in terms of overall quality for both VCTK and SVC
target voices. The VCTK (zero-shot) and VCTK→SVC
(zero-shot) training configurations are the top performers
in terms of voice similarity for VCTK and SVC target

Quality Similarity

VCTK (one-hot) 2.377 2.828
VCTK (zero-shot) 2.447 3.051
SVC (zero-shot) 2.289 2.549
VCTK→SVC (zero-shot) 2.476 2.664

Table 3. Mean opinion scores on singing voice with target
voices from the VCTK test set with fixed encoder model.

Quality Similarity

VCTK (one-hot) N/A N/A
VCTK (zero-shot) 2.154 2.610
SVC (zero-shot) 2.477 2.772
VCTK→SVC (zero-shot) 2.674 2.937

Table 4. Mean opinion scores on singing voice with target
voices from the SVC test set with fixed encoder model.

voices, respectively.
Lastly, we further exemplify the zero-shot nature of our

proposed method by subjecting our system to target voices
outside of the VCTK and SVC datasets. These examples
were generated without any further training of models and
using just 1-2 seconds of audio from a target voice in order
to compute speaker embeddings. While quality and voice
similarity could obviously be improved by further model
fine tuning on more data from target voices, it is apparent
that the system can generate reasonable conversions resem-
bling the voices from the reference material in a zero-shot
manner.

4. CONCLUSION

In this paper, we propose the application of speaker embed-
ding networks for zero-shot SVC. We suggest two archi-
tectures for carrying out zero-shot SVC using the WORLD
vocoder for modeling singing voice. Overall, we find that
speaker embeddings can indeed be used directly for zero-
shot SVC. Moreover, zero-shot networks replacing one-
hot speaker labels with speaker embeddings perform as
well as (or even better than) their supervised closed set
counterparts, with the invaluable added benefits that they
can be trained on unlabeled data and can potentially adapt
to new voices without requiring further training. Further-
more, we show that there is some benefit to training zero-
shot SVC networks by adapting an initial model trained on
large amounts of speech data. In future work, we will in-
vestigate learning latent factors which can allow for further
expressive manipulation of conversion results. While some
initial progress to this end has been made using Gaussian
Mixture VAEs (GMVAEs) [11], they have largely been
limited to sung vowels. We can likely generalize this to
more practical singing voice by utilizing the conditioning
signals used in this work. We are also interested in replac-
ing the WORLD vocoder with learned vocoders based on
differentiable digital signal processing, as in [18, 25], in
order to enable lightweight end-to-end training.
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