
IMPROVED HANDLING OF REPEATS AND JUMPS IN AUDIO–SHEET
IMAGE SYNCHRONIZATION

Mengyi Shan
Harvey Mudd College
mshan@g.hmc.edu

TJ Tsai
Harvey Mudd College
ttsai@g.hmc.eud

ABSTRACT

This paper studies the problem of automatically generat-
ing piano score following videos given an audio record-
ing and raw sheet music images. Whereas previous works
focus on synthetic sheet music where the data has been
cleaned and preprocessed, we instead focus on developing
a system that can cope with the messiness of raw, unpro-
cessed sheet music PDFs from IMSLP. We investigate how
well existing systems cope with real scanned sheet mu-
sic, filler pages and unrelated pieces or movements, and
discontinuities due to jumps and repeats. We find that a
significant bottleneck in system performance is handling
jumps and repeats correctly. In particular, we find that a
previously proposed Jump DTW algorithm does not per-
form robustly when jump locations are unknown a priori.
We propose a novel alignment algorithm called Hierarchi-
cal DTW that can handle jumps and repeats even when
jump locations are not known. It first performs alignment
at the feature level on each sheet music line, and then per-
forms a second alignment at the segment level. By op-
erating at the segment level, it is able to encode domain
knowledge about how likely a particular jump is. Through
carefully controlled experiments on unprocessed sheet mu-
sic PDFs from IMSLP, we show that Hierarachical DTW
significantly outperforms Jump DTW in handling various
types of jumps.

1. INTRODUCTION

This paper tackles the problem of generating piano score
following videos in a fully automated manner. Given an
audio recording of a piano performance, our long-term
goal is to build a system that can (a) identify the piece and
automatically download the corresponding sheet music
PDF from the International Music Score Library Project
(IMSLP) website, and (b) generate a video showing the
corresponding line of sheet music at each time instant in
the audio recording. In this work, we focus exclusively on
task (b), assuming that the correct sheet music PDF has
been identified. This task requires us to perform audio–
sheet music alignment on completely unprocessed PDF

c© M. Shan and T. Tsai. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
M. Shan and T. Tsai, “Improved Handling of Repeats and Jumps in
Audio–Sheet Image Synchronization”, in Proc. of the 21st Int. Society
for Music Information Retrieval Conf., Montréal, Canada, 2020.

files from IMSLP. This paper describes the key insights we
have gained in building such a system, along with a novel
alignment algorithm developed in the process.

Many previous works have studied cross-modal align-
ment between sheet music images and audio. Two gen-
eral categories of approaches have been proposed. The
first approach is to convert the sheet music images to a
symbolic representation using optical music recognition
(OMR), to collapse the pitch information across octaves to
get a chroma representation, and then to compare this rep-
resentation to chroma features extracted from the audio.
This approach has been applied to synchronizing audio
and sheet music [1] [2] [3], identifying audio recordings
that correspond to a given sheet music representation [4],
and finding the corresponding audio segment given a short
segment of sheet music [5]. The second approach is to
convert both sheet music and audio into a learned feature
space that directly encodes semantic similarity. This has
been done using convolutional neural networks combined
with canonical correlation analysis [6] [7], pairwise rank-
ing loss [8] [9], or some other suitable loss metric. This
approach has been explored in the context of online sheet
music score following [10], sheet music retrieval given an
audio query [11] [8] [9], and offline alignment of sheet mu-
sic and audio [8]. Recent works [12] [13] have also shown
promising results formulating the score following problem
as a reinforcement learning game. See [14] for an overview
of work in this area.

The main difference between our current task and previ-
ous work is that we are working with totally unprocessed
data “in the wild." All of the above works make one or
more of the following assumptions, which are untrue in
our task. First, many works focus primarily on training
and testing with synthetic sheet music. In our case, we
are primarily working with digital scans of physical sheet
music. Second, most works assume that the data has been
cleaned and preprocessed in various ways. For example,
it is commonly assumed that unrelated pages of sheet mu-
sic have been removed. Many works further assume that
each page has been segmented into lines, so that the data
is presented as a sequence of image strips each contain-
ing a single line of sheet music. In our task, the raw PDF
from IMSLP may contain unrelated movements, pieces, or
filler pages like the title page or table of contents. We also
obviously cannot assume that each page has already been
segmented perfectly. Third, all of the above works assume
that the music does not have any jumps or repeats. In our

62



Figure 1. Architecture of proposed system. The sheet mu-
sic and audio are both converted into bootleg scores, and
then aligned with the Hierarchical DTW algorithm.

task, we have to be able to handle common discontinuities
like repeats, D.C. al coda, D.S. al fine, etc.

In attempting to build a system that can handle messy,
real-world data, we discovered two things. First, we found
that most of the above issues can be resolved to a rea-
sonable degree by suitably combining existing tools in the
MIR literature. However, we also discovered that a sig-
nificant bottleneck in system performance was handling
jumps and repeats. In particular, we found that a previ-
ously proposed Jump DTW alignment algorithm [15] does
not yield satisfactory performance when jump locations are
unknown a priori.

There are several existing offline algorithms for align-
ing two feature sequences in the presence of jumps or
repeats. Jump DTW [15] is a variant of dynamic time
warping (DTW) where additional long-range transitions
are allowed in the cost matrix at potential jump locations.
Mueller and Appelt [16] and Grachten et al. [17] also pro-
pose variants of DTW for partial alignment in the pres-
ence of structural differences. One limitation of these latter
two works is that repeated sections are handled by simply
skipping or deleting sections of features, so that the actual
alignment of the repeated section is not known. Joder et al.
[18] frame the alignment problem as a conditional random
field with additional transitions inserted at known jump lo-
cations. Jiang et al. [19] use a modified Markov model
that allows arbitrary jumps to follow a musician during a
practice session with lots of do-overs and jumps. There are
also several real-time score following algorithms that han-
dle various types of jumps [20] [21] [22] [23], though our
focus in this work is on the offline context. In this study,
we primarily focus on Jump DTW as the closest match to
our target scenario: it is an offline algorithm, targeted at
performances rather than practice sessions, and it provides
a complete estimated alignment in the presence of jumps.

The main conceptual contribution of this paper is a
novel alignment algorithm called Hierarchical DTW. Un-
like Jump DTW, it does not require knowledge of jump lo-
cations a priori, but instead considers every line transition
as a potential jump location. The algorithm is called Hi-
erarchical DTW because it first performs an alignment at
the feature level with each sheet music line, and then uses
the results to perform a second alignment at the segment
level. By performing an alignment at the segment level, we
can encode domain knowledge about which types of jumps

are likely. The algorithm is very simple and only has two
hyperparameters, which both have very clear and intuitive
interpretations. Through carefully controlled experiments
on unprocessed PDFs from IMSLP, we show that Hierar-
chical DTW significantly outperforms Jump DTW on the
piano score following video generation task. 1

2. SYSTEM DESCRIPTION

Figure 1 shows a high-level overview of our proposed sys-
tem. We will explain its design in three parts: feature ex-
traction, alignment, and video generation.

2.1 Feature Extraction

The first step is to convert both the sheet music and audio
into bootleg score representations. The bootleg score [24]
is a recently proposed feature representation for aligning
piano sheet music images and MIDI. For sheet music, it
encodes the position of filled noteheads relative to the staff
lines. The bootleg score itself is a 62 × N binary matrix,
where 62 indicates the total number of possible staff line
positions in both the left and right hands, and where N
indicates the total estimated number of simultaneous note
events. For MIDI files, each note onset can be projected
onto the bootleg score using the rules of Western musical
notation. Ambiguities due to enharmonic representations
or left-right hand attribution are handled by simply setting
all possible positions to 1.

We computed the bootleg score representations in the
following manner. We convert each PDF into a sequence of
PNG images at 300 dpi, compute a bootleg score for each
page, and then represent the entire PDF as a sequence of
bootleg score fragments, where each fragment corresponds
to a single line of music. Note that these fragments may
include lines of music from other unrelated movements or
pieces in the same PDF, or may even represent nonsense
features coming from filler pages. Next, we transcribe the
audio recording using the Onsets and Frames [25] auto-
matic music transcription system, and then convert the es-
timated MIDI into its corresponding bootleg score. In this
work, we treat the bootleg score computation and music
transcription as fixed feature extractors.

2.2 Alignment

The second main step is to align the bootleg score represen-
tations. We propose a novel alignment algorithm called Hi-
erarchical DTW to accomplish this task. Figure 2 shows an
overview of the algorithm, which consists of three stages.

The first stage is to perform feature-level alignment.
We do this using a variant of DTW called subsequence
DTW, which finds the optimal alignment between a short
query sequence and any subsequence within a reference
sequence. We perform subsequence DTW between each
sheet music bootleg score fragment (each corresponding
to one line of music) and the entire MIDI bootleg score, as

1 Code, data, and example score following videos can be found at
https://github.com/HMC-MIR/YoutubeScoreFollowing.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

63



Figure 2. Overview of Hierarchical DTW. Subsequence
DTW is performed at the feature level on each sheet music
line. The results are used to generate the segment-level
data matrices, and then a second alignment is performed at
the segment level. Only a few selected elements of Tseg
are shown for illustration.

shown on the left side of Figure 2. 2 We use the normalized
negative inner product distance metric proposed in [24]
along with allowable transitions {(1, 1), (1, 2), (2, 1)}with
weights {1, 1, 2}. For a more detailed explanation of sub-
sequence DTW, we refer the reader to [26].

The second stage is to construct the segment-level data
matrices. There are two matrices that need to be con-
structed. The first matrix is formed by taking the last row
in every cumulative cost matrixDi from stage 1 and stack-
ing them into a matrix of size L ×M , where L indicates
the total number of lines of music in the PDF and M in-
dicates the total number of features in the MIDI bootleg
score. This matrix contains subsequence path scores and
is denoted as Cseg in Figure 2. It will play a role analo-
gous to the pairwise cost matrix when we do dynamic pro-
gramming at the segment level. The second matrix Tseg is
the same size as Cseg and indicates allowable transitions at
the segment level. Each element Tseg[i, j] is computed by
identifying the jth element in the last row of Di, and then
backtracking from this element to determine the beginning
location of the matching path. Tseg[i, j] thus indicates the
starting location of the best matching path in the ith line of
sheet music ending at position j in the MIDI bootleg score.
In Figure 2, a few selected elements in Tseg are shown as
colored boxes to illustrate this process. Note that, in order
to construct Tseg , we need to backtrace from every possible
location for every line of sheet music.

The third stage is to perform segment-level alignment.
Here, we use dynamic programming to find the optimal
path through Cseg using transitions in Tseg . We construct
a segment-level cumulative cost matrix Dseg by filling
out its entries column-by-column using dynamic program-
ming. The first column of Dseg is initialized to all zeros,
which ensures that the matching path can start on any line
of music without penalty. Note that, unlike regular DTW
where the set of allowable transitions and weights is the
same at every location, here the set of allowable transi-
tions and weights is different for each element of Dseg .

2 In Figure 2, the horizontal axis corresponds to the reference (left to
right) and the vertical axis corresponds to the query (bottom to top).

Since the transitions are all unique, we simply encode the
previous location rather than the transition type (e.g. the
previous location (i − 1, j − 1) instead of the transition
(1, 1)). When computing Dseg[i, j], there are two types of
allowable transitions. The first type of transition is skip-
ping elements. This means transitioning from (i, j − 1)
and moving directly to the right by one position without
accumulating any score. Here, the candidate path score is
Dseg[i, j] = Dseg[i, j − 1]. The second type of transition
is matching the ith line of music (ending) at this position.
In this case, we can transition from the end of any line of
music immediately before the matching segment begins.
If we let k , Tseg[i, j] be the beginning of the match-
ing subsequence path, then there are L different possible
transitions from (n, k − 1), n = 0, . . . , L − 1 where n in-
dicates the line of music. Here, the candidate path scores
are Dseg[i, j] = Dseg[n, k − 1] + wn,i · Cseg[i, j] + pn,i,
where wn,i is a multiplicative weight and pn,i is an addi-
tive penalty for jumps. We can summarize the dynamic
programming rules for the segment-level alignment as

k , Tseg[i, j] (1)

Dseg[i, j] = min


Dseg[i, j − 1]

Dseg[0, k − 1] + w0,i · Cseg[i, j] + p0,i

Dseg[1, k − 1] + w1,i · Cseg[i, j] + p1,i

· · ·
(2)

where the minimum is calculated over all sheet music lines
n = 0, . . . , L− 1. When filling out the entries of Dseg us-
ing dynamic programming, we also keep track of backtrace
information in a separate matrix. OnceDseg has been con-
structed, we identify the element in the last column ofDseg

with the lowest path score, and then backtrace from that
position to determine the optimal alignment path. Figure 2
shows the optimal alignment path as a series of black dots
and the induced segmentation of the MIDI bootleg score as
gray rectangles.

The real power of Hierarchical DTW comes from set-
ting wn,i and pn,i in an intelligent way that encodes mu-
sical domain knowledge. These values can be adapted
to allow no jumps, allow arbitrary jumps, or anything in
between. For example, disallowing jumps means setting
pn,i = ∞ · 1(i 6= n + 1). The system described below is
one possible instantiation based on three assumptions: (a)
the performed lines of music will form a contiguous block
(e.g. we will not go from page 13 to 34 to 19), (b) back-
wards jumps (from repeats) are to lines of music we have
seen before, and (c) forward jumps (from D.S. al fine) are
to one line past the furthest line of music that has been seen
before (which we refer to as the “leading edge"). For the
allowed jump transitions, multiplicative weights are set to
1 and additive penalties are set to−γ·pavg , where γ is a hy-
perparameter and pavg is the result of calculating the best
subsequence path score for each line of sheet music and av-
eraging the scores across all lines. So, if γ = 1, the jump
penalty approximately offsets 1 line of matching music.
Note that we can keep track of which lines have been seen

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

64



before by defining two matrices Rlower and Rupper which
are the same size as Cseg and keep track of the range of
lines that have been seen in the optimal path ending at any
position (i, j). Rlower and Rupper can be updated along
with Dseg and the backtrace matrix during the dynamic
programming stage. For regular forward transitions, we
allow moving to the next line, staying on the current line
(slowing down), or skipping one line (speeding up). These
three transitions have multiplicative weights 1, α, and α
and additive penalties of 0 (all), respectively. We found
that allowing additional time warping at the segment level
with multiplicative penalty α = 0.5 allows the algorithm
to recover from large mistakes more easily.

Hierarchical DTW is simple yet flexible. The version
described above only has two hyperparameters that corre-
spond to a multiplicative penalty for speeding up/slowing
down (α) and an additive penalty for jumps (γ). Yet, the
framework of Hierarchical DTW makes it possible to se-
lectively allow very specific types of jumps that obey com-
mon musical conventions.

2.3 Video Generation

The third main step is to generate the score following
video. In order to translate the predicted segment-level
alignment into a score following video, we need additional
auxiliary information from the bootleg score feature com-
putation. For the audio recording, we need to keep track of
the correspondence between each MIDI bootleg score fea-
ture column and its corresponding time in the audio record-
ing. For the sheet music, we need to keep track of the
correspondence between each sheet music bootleg score
feature column and its corresponding page and pixel range
in the sheet music images. We modified the original code
provided in [24] to return this information, in addition to
the bootleg score features. Given this auxiliary information
and the predicted segment-level alignment, we can gen-
erate the score following video in a very straightforward
manner: we simply show the predicted line of sheet music
at every time instant in the audio recording.

3. EXPERIMENTAL SETUP

In this section, we explain the datasets and metrics used to
evaluate our proposed system.

Our data is a derivative of the Sheet MIDI Retrieval
dataset [24]. We will first describe the original dataset,
and then explain how we used it to generate the data for
this current work. The original dataset contains scanned
sheet music from IMSLP for 200 solo piano pieces across
25 composers. The sheet music comes with manual anno-
tations of how many lines of music are on each page, and
how many measures are on each line. For each of the 200
pieces, there is a corresponding MIDI file and ground truth
annotations of measure-level timestamps.

We derived our dataset in the following manner. We
synthesize the MIDI files to audio using the FluidSynth
library. By combining the sheet music and MIDI annota-
tions, we determine the time intervals in the audio record-

Figure 3. Generating audio with repeats. The original au-
dio recording is segmented by lines of sheet music. We
sample k boundary points without replacement, and then
splice and concatenate audio segments to generate the data
with repeats.

ing that correspond to each line of sheet music. For each
sheet music PDF in the Sheet MIDI Retrieval dataset, we
retrieved the original PDF from the IMSLP website. The
only difference between these two files is that the original
IMSLP PDF contains other unrelated movements, pieces,
and filler pages that were removed during the preparation
of the Sheet MIDI Retrieval dataset. For example, one PDF
in the test set contains 127 pages, of which only 17 corre-
spond to the piece of interest. Because we want to test
how well our system handles this type of noise, we use the
original PDF with no preprocessing or data cleaning what-
soever. We augmented the sheet music annotations by con-
verting the original IMSLP PDFs into PNG files at 300 dpi
and manually annotating the vertical pixel range for every
line of sheet music played in the audio recording. This re-
quired annotating a total of 1090 pages with 11, 556 pixel
positions. By combining all of our annotations together,
we can determine the page and pixel range of the line of
sheet music that is currently being played at every point in
the audio recording. In total, there are 13.0 hours of anno-
tated audio. Because there are no repeats or jumps in the
sheet music, we call this data the “No Repeat" dataset.

We also generate several synthetic datasets to test how
well our system handles jumps and repeats. The process
of generating a synthetic dataset consists of three steps,
as shown in Figure 3. The first step is to identify the
L + 1 boundary positions of the L lines of sheet music
that are played in the audio recording. The second step
is to randomly sample k boundary points without replace-
ment. The value of k depends on the types of jumps we
want to simulate. In this work, we consider four schemas:
1 repeat (k = 2), 2 repeats (k = 3), 3 repeats (k = 4),
and D.S. al fine (k = 3). The third step is to splice and
concatenate the audio to generate a modified audio record-
ing as shown in Figure 3. Note that all of the synthetic
datasets have the exact same sheet music, but their audio
recordings have been spliced to reflect the desired schema.
Since the process of sampling is random, we generate five
different samples for every audio recording. The four syn-

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

65



Figure 4. Comparison of system performance on bench-
marks with various types of jumps. The bar levels indicate
accuracy with a scoring collar of 0.5 sec. The short gray
lines indicate accuracy with scoring collars of 0 and 1.0
seconds.

thetic datasets described above have 84, 94, 100, and 81
hours of audio, respectively. The ground truth annotations
are modified accordingly.

We evaluate system performance using a simple accu-
racy metric. Because our goal is to generate score follow-
ing videos, we want to use an evaluation metric that corre-
lates with user experience. The accuracy simply indicates
the percentage of time that the correct line of music is be-
ing shown to the user. When calculating accuracy, we use
a scoring collar, in which small intervals (ti−∆t, ti +∆t)
around the ground truth transition timestamps ti are ig-
nored during scoring. This is a standard practice in eval-
uating time-based segmentation tasks like speech activity
detection [27]. By using a range of scoring collar values,
we can also gain insight into what fraction of our errors
occur very close to the transition boundaries.

For all experiments, we use (the same) 40 pieces for
training and 160 pieces for testing. This results in 160 test
queries for the No Repeat benchmark (10.6 hours of au-
dio) and 160 × 5 = 800 test queries for the benchmarks
with jumps (69.2, 76.9, 81.8, and 66.1 hours). Since we
treat the bootleg score computation and automatic music
transcription as fixed feature extractors, our system has no
trainable weights and only 2 hyperparameters (α, γ). So,
we only use a small fraction of the data for developing the
algorithm, and we reserve most of the data for testing.

4. RESULTS

In this section, we present our experimental results on the
piano score following video generation task.

We compare our proposed system to three other base-
line systems. The first baseline system (‘bscore-subDTW’)
is identical to our proposed system in Figure 1 except that it
replaces the Hierarchical DTW with a simple subsequence
DTW. The second baseline system (‘bscore-jumpDTW’) is
also identical to our proposed system except that it replaces

the Hierarchical DTW with Jump DTW [15]. Because
Jump DTW was designed to handle jumps and repeats, we
expect this system to provide the most competitive base-
line results. The third baseline system (‘Dorfer-subDTW’)
is based on Dorfer et. al [9]. This system approaches the
audio–sheet music alignment task by training a multimodal
CNN to project chunks of sheet music and chunks of audio
spectrogram into the same feature space where similarity
can be computed directly. We used the pretrained CNN
provided in [9] as a feature extractor, and then apply sub-
sequence DTW. Finally, our proposed Hierarchical DTW
system is indicated as ‘bscore-hierDTW.’

Figure 4 shows the results of these four systems. The
histogram bars indicate the accuracies with a scoring collar
of ∆t = .5 sec. There are four things to notice about these
results. First, the Dorfer-subDTW system performs poorly
on all benchmarks. This indicates that this system does
not generalize well to the scanned sheet music from IM-
SLP. Second, the bscore-subDTW system performs well
on the No Repeat benchmark (87.9% accuracy), but per-
forms poorly on all other benchmarks (e.g. 30.3% on the
Repeat 3 benchmark). This is to be expected, since sub-
sequence DTW cannot handle jumps and repeats. Third,
Jump DTW is significantly worse than subsequence DTW
on the No Repeat benchmark (71.5% vs. 87.9%), but it
has consistent performance across benchmarks with re-
peats and jumps (71.5%, 71.8%, 71.7%, and 70.5%). This
indicates that Jump DTW is able to cope with discontinu-
ities, but with a significant cost in performance. Fourth,
the Hierarchical DTW system is only slightly worse than
subsequence DTW on the No Repeat benchmark (84.8%
vs. 87.9%), and its performance decreases only slightly on
the other benchmarks (83.9%, 82.8%, 82.4%, 81.6%). We
can see that the Hierarchical DTW system consistently out-
performs Jump DTW by 10-13% across all benchmarks.
These results indicate that Hierarchical DTW is able to
handle repeats and jumps reasonably well, and with a much
smaller performance cost than Jump DTW.

5. ANALYSIS

In this section, we conduct two different analyses to gain
more insight into system behavior.

5.1 Failure Modes

The first analysis answers the question, “What are the fail-
ure modes for each system?" To answer this question, we
identified the individual queries that had the poorest accu-
racy, and then investigated the reasons for the errors.

The Dorfer system has two primary failure modes. The
first failure mode is that the system is not designed to han-
dle jumps, so it performs very poorly on any datasets with
jumps or repeats. Note, however, that this system also per-
forms poorly on the No Repeat benchmark. When we in-
vestigated the reasons for this, we discovered the second
major failure mode: page segmentation. The sub-system
for segmenting each page into lines of music performed
very poorly on many pages in the dataset. This is perhaps

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

66



not surprising, since the original system was developed and
trained on synthetic sheet music, where staff lines are per-
fectly horizontal. In this case, the assumptions in this work
do not translate well to our task of working with IMSLP
scanned sheet music.

The subsequence DTW system also has two primary
failure modes. The first is (again) that the system cannot
handle jumps or repeats. When we investigated the reasons
for major errors on the No Repeat benchmark, we find that
the failures primarily come from mistakes in the bootleg
score representation. The bootleg score does not account
for octave markings or clef changes, and it does not de-
tect non-filled noteheads (e.g. half or whole notes). When
there are long stretches of sheet music that contain several
of these elements at the same time, the bootleg score is a
poor representation of the sheet music. For example, three
of the pieces in the test set are Erik Satie’s Gymnopedies,
where the sheet music is almost entirely non-filled note-
heads. These pieces had close to 0% accuracy and caused
a decrease of several percentage points on the aggregate
accuracy score.

The JumpDTW system has one primary failure mode: it
often jumps to incorrect lines of music. This occurs when
either (a) there are similar lines of music in multiple places
(e.g. the recapitulation of a theme), or (b) significant boot-
leg score errors cause the system to match random lines
of music elsewhere in the piece. This problem is most
clearly seen in the No Repeat benchmark, where it often
takes jumps when none are present.

The Hierarchical DTW system has two primary failure
modes. The first failure mode is prolonged bootleg score
failures, which cause the algorithm to insert spurious small
jumps. Once the bootleg score becomes an accurate repre-
sentation again, the system is usually able to recover. The
second failure mode is when the sheet music contains very
repetitive measures and lines. This problem is particularly
bad when the sheet music is very short (e.g. 2-3 pages
long) and has jumps or repeats.

Figure 5 shows a visualization tool for diagnosing fail-
ure modes. The top half of Figure 5 shows four gray strips,
each representating the duration of a single audio recording
in the No Repeat benchmark. The topmost strip contains
black vertical lines indicating the location of the ground
truth sheet music line transitions. The three strips below
it show the predictions of the subsequence DTW, Jump
DTW, and Hierarchical DTW systems, where errors are
shown in red. The bottom half of Figure 5 shows the same
information for a query in the Repeat 3 benchmark. The
location of the jumps are indicated with blue vertical lines.
We can see many of the failure modes described above. For
example, Jump DTW has spurious jumps in both queries
but is able to follow two of the repeats in the bottom query.
Subsequence DTW is unable to handle the jumps in the
bottom query, but matches well after the last jump occurs.
Finally, we can see that the Hierarchical DTW system is
able to follow the correct sequence of sheet music lines,
and its errors primarily occur close to line transitions.

Figure 5. Visualizing system predictions for a query with
no repeats (top half) and a query with three repeats (bottom
half). Black lines show ground truth line transitions, red
regions indicate errors, and blue lines show repeats.

5.2 Error Locations

The second analysis answers the question, “Where are the
errors located?" One way we can answer this question is
to calculate system performance across a range of values
for the scoring collars. This can tell us how close the er-
rors are to line transition boundaries. Figure 4 shows the
results of each system with various scoring collar values.
The histogram bar level indicates the default scoring collar
∆t = .5 sec, and the results with ∆t set to 0 sec and 1.0
sec are shown as short horizontal gray lines directly below
and above the histogram bar level, respectively. Note that
as ∆t increases, the accuracy will increase monotonically.

There are two things to notice about the results with
various scoring collars. First, we see that even with a gen-
erous scoring collar of ∆t = 1 sec, the accuracies of all
systems only increase about 1-2%. This indicates that most
of the errors are not slight misalignments at the line tran-
sitions, but are instead large errors due to total alignment
failures. Second, we observe that the results with Hierar-
chical DTW on benchmarks with jumps is only marginally
worse than the No Repeat benchmark. This indicates that
Hierarchical DTW is able to handle discontinuities reason-
ably well. Combining these two observations, the failures
in the bscore-hierDTW system seem to primarily come
from large misalignments due to prolonged bootleg score
failures. This strongly suggests that the performance bot-
tleneck is the bootleg score representation, not the Hierar-
chical DTW alignment.

6. CONCLUSION

We present a method for audio-sheet image alignment that
combines a bootleg score representation with a novel align-
ment algorithm called Hierarchical DTW, which performs
alignment at both the feature-level and the segment-level in
order to handle repeats, jumps, and unknown offset in the
sheet music. We show that Hierarchical DTW significantly
outperforms Jump DTW in handling jumps and repeats on
unprocessed sheet music.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

67



7. REFERENCES

[1] D. Damm, C. Fremerey, F. Kurth, M. Müller, and
M. Clausen, “Multimodal presentation and browsing
of music,” in Proc. of the International Conference on
Multimodal Interfaces (ICMI), 2008, pp. 205–208.

[2] F. Kurth, M. Müller, C. Fremerey, Y. Chang, and
M. Clausen, “Automated synchronization of scanned
sheet music with audio recordings,” in Proc. of the
International Conference on Music Information Re-
trieval (ISMIR), 2007, pp. 261–266.

[3] V. Thomas, C. Fremerey, M. Müller, and M. Clausen,
“Linking sheet music and audio – challenges and new
approaches,” in Multimodal Music Processing, 2012,
vol. 3, pp. 1–22.

[4] C. Fremerey, M. Müller, F. Kurth, and M. Clausen,
“Automatic mapping of scanned sheet music to au-
dio recordings,” in Proc. of the International Confer-
ence on Music Information Retrieval (ISMIR), 2008,
pp. 413–418.

[5] C. Fremerey, M. Clausen, S. Ewert, and M. Müller,
“Sheet music-audio identification,” in Proc. of the
International Conference on Music Information Re-
trieval (ISMIR), 2009, pp. 645–650.

[6] M. Dorfer, A. Arzt, and G. Widmer, “Towards end-to-
end audio-sheet-music retrieval,” in Neural Informa-
tion Processing Systems (NIPS) End-to-End Learning
for Speech and Audio Processing Workshop, 2016.

[7] M. Dorfer, J. Schlüter, A. Vall, F. Korzeniowski, and
G. Widmer, “End-to-end cross-modality retrieval with
cca projections and pairwise ranking loss,” Interna-
tional Journal of Multimedia Information Retrieval,
vol. 7, no. 2, pp. 117–128, 2018.

[8] M. Dorfer, A. Arzt, and G. Widmer, “Learning audio-
sheet music correspondences for score identification
and offline alignment,” in Proc. of the International
Conference on Music Information Retrieval (ISMIR),
2017, pp. 115–122.

[9] M. Dorfer, J. Hajič, A. Arzt, H. Frostel, and G. Wid-
mer, “Learning audio-sheet music correspondences for
cross-modal retrieval and piece identification,” Trans.
of the International Society for Music Information Re-
trieval, vol. 1, no. 1, pp. 22–33, 2018.

[10] M. Dorfer, A. Arzt, S. Böck, A. Durand, and G. Wid-
mer, “Live score following on sheet music images,” in
Late Breaking Demos at the International Conference
on Music Information Retrieval (ISMIR), 2016.

[11] M. Dorfer, A. Arzt, and G. Widmer, “Towards score
following in sheet music images,” in Proc. of the Inter-
national Conference on Music Information Retrieval
(ISMIR), 2016, pp. 789–795.

[12] M. Dorfer, F. Henkel, and G. Widmer, “Learning to lis-
ten, read, and follow: Score following as a reinforce-
ment learning game,” in Proc. of the International Con-
ference on Music Information Retrieval (ISMIR), 2018,
pp. 784–791.

[13] F. Henkel, S. Balke, M. Dorfer, and G. Widmer, “Score
following as a multi-modal reinforcement learning
problem,” Trans. of the International Society for Music
Information Retrieval, vol. 2, no. 1, pp. 67–81, 2019.

[14] M. Müller, A. Arzt, S. Balke, M. Dorfer, and G. Wid-
mer, “Cross-modal music retrieval and applications:
An overview of key methodologies,” IEEE Signal Pro-
cessing Magazine, vol. 36, no. 1, pp. 52–62, 2019.

[15] C. Fremerey, M. Müller, and M. Clausen, “Handling
repeats and jumps in score-performance synchroniza-
tion,” in Proc. of the International Conference on Mu-
sic Information Retrieval (ISMIR), 2010, pp. 243–248.

[16] M. Müller and D. Appelt, “Path-constrained partial
music synchronization,” in Proc. of the International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), 2008, pp. 65–68.

[17] M. Grachten, M. Gasser, A. Arzt, and G. Widmer, “Au-
tomatic alignment of music performances with struc-
tural differences,” in Proc. of the International Society
for Music Information Retrieval Conference (ISMIR),
2013, pp. 607–612.

[18] C. Joder, S. Essid, and G. Richard, “A conditional ran-
dom field framework for robust and scalable audio-to-
score matching,” IEEE Trans. on Audio, Speech, and
Language Processing, vol. 19, no. 8, pp. 2385–2397,
2011.

[19] Y. Jiang, F. Ryan, D. Cartledge, and C. Raphael, “Of-
fline score alignment for realistic music practice,” in
Sound and Music Computing Conference, 2019.

[20] T. Nakamura, E. Nakamura, and S. Sagayama, “Real-
time audio-to-score alignment of music performances
containing errors and arbitrary repeats and skips,”
IEEE/ACM Trans. on Audio, Speech, and Language
Processing, vol. 24, no. 2, pp. 329–339, 2015.

[21] A. Arzt and G. Widmer, “Towards effective ‘any-
time’ music tracking,” in Proc. of the Starting AI Re-
searchers’ Symposium, 2010.

[22] A. Arzt, G. Widmer, and S. Dixon, “Automatic page
turning for musicians via real-time machine listening,”
in Proc. of the European Conference on Artificial In-
telligence (ECAI), 2008, pp. 241–245.

[23] B. Pardo and W. Birmingham, “Modeling form for
on-line following of musical performances,” in Proc.
of the National Conference on Artificial Intelligence,
vol. 20, no. 2, 2005, pp. 1018–1023.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

68



[24] D. Yang, T. Tanprasert, T. Jenrungrot, M. Shan, and
T. Tsai, “Midi passage retrieval using cell phone pic-
tures of sheet music,” in Proc. of the International So-
ciety for Music Information Retrieval Conference (IS-
MIR), 2019, pp. 916–923.

[25] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon,
C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and
frames: Dual-objective piano transcription,” in Proc.
of the International Conference on Music Information
Retrieval (ISMIR), 2018, pp. 50–57.

[26] M. Müller, Fundamentals of Music Processing: Audio,
Analysis, Algorithms, Applications. Springer, 2015.

[27] NIST Open Speech-Activity-Detection Eval-
uation Plan, 2016 (accessed May 6, 2020),
https://www.nist.gov/system/files/documents/itl/
iad/mig/Open_SAD_Eval_Plan_v10.pdf.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020

69


