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ABSTRACT

Choral music recordings are a particularly challeng-
ing target for source separation due to the choral blend
and the inherent acoustical complexity of the ‘choral tim-
bre’. Due to the scarcity of publicly available multi-
track choir recordings, we create a dataset of synthesized
Bach chorales. We apply data augmentation to alter the
chorales so that they more faithfully represent music from
a broader range of choral genres. For separation we em-
ploy Wave-U-Net, a time-domain convolutional neural net-
work (CNN) originally proposed for vocals and accom-
paniment separation. We show that Wave-U-Net outper-
forms a baseline implemented using score-informed NMF
(non-negative matrix factorization). We introduce score-
informed Wave-U-Net to incorporate the musical score into
the separation process. We experiment with different score
conditioning methods and show that conditioning on the
score leads to improved separation results. We propose a
‘score-guided’ model variant in which separation is guided
by the score alone, bypassing the need to specify the iden-
tity of the extracted source. Finally, we evaluate our mod-
els (trained on synthetic data only) on real choir recordings
and find that in the absence of a large training set of real
recordings, NMF still performs better than Wave-U-Net in
this setting. To our knowledge, this paper is the first to
study source separation of choral music.

1. INTRODUCTION

In this paper, we set out to investigate the application of
source separation to choral music. We aim to take a record-
ing of choral music and extract from it individual record-
ings for each of the choir sections (normally soprano, alto,
tenor, and bass).

Audio source separation refers to extracting one or more
sound sources of interest from a recording that involves
multiple sound sources [1]. The musical applications of
audio source separation include separating instruments in
a recording and generating ‘karaoke’ tracks of songs by
separating the accompaniment and the lead vocals [2]. To
the best of our knowledge, this paper is the first to attempt
separation of choral music. Separation of choral music en-
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ables applications such as fine-grained editing, analysis,
and automatic creation of practice tracks (recordings of in-
dividual choir parts used by singers as an aid for learning
new music) from professional choir recordings.

At the outset, choral music separation would seem a
challenging task. Every choir section is composed of mul-
tiple singers singing simultaneously with slight variations
in pitch and in timing, and every singer has a unique voice
timbre. It follows that the resulting ‘choral timbre‘ has ex-
tremely varied acoustical characteristics. Furthermore, an
important goal in choral performance is achieving blend
between singers, so that the choir is perceived by listeners
as one coherent sound source [3]. This blend can naturally
hinder the operation of an algorithm wishing to separate
the choir. Choral music is often recorded in highly rever-
berant spaces such as churches, and the reverberations con-
stitute yet another hurdle for separation. Finally, choirs are
seldom recorded in a ‘one voice per track’ setting [4], and
this lack of multi-track recordings makes it harder to de-
sign and validate source separation systems.

The rest of this paper is structured as follows. In Sec-
tion 2 we review related work. In Section 3, we present
a dataset of synthesized Bach chorale harmonizations. In
Section 4, we establish baseline separation performance
for choral music using NMF [5]. In Section 5, we apply a
deep learning separation technique called Wave-U-Net [6]
to choral music and in Section 6 we extend it to incorporate
musical scores into the separation process. In Section 7,
we present the results of several experiments conducted to
determine the effectiveness of the proposed techniques.

2. RELATED WORK

Recently, the state of the art in source separation has ad-
vanced considerably, with some applications in speech
even surpassing ideal time-frequency magnitude masking
[7]. In music, one of the most common applications is vo-
cals and accompaniment separation [8]. In this task, deep
learning methods show the best performance among sepa-
ration techniques [9]. Some state-of-the-art techniques op-
erate on spectrograms [10,11] while others operate directly
on the signal [6,7,12–14]. The reader is referred to [15] for
a review of deep learning for speech separation and to [2,8]
for overviews of music separation.

U-Net [16] is a prominent deep learning separation
technique. Originally used for semantic segmentation
of biomedical images [17], U-Net employs an encoder-
decoder CNN architecture with skip connections to pro-
cess the input on multiple scales. Wave-U-Net [6] extends
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U-Net but instead of processing spectrograms it is applied
directly to the signal. Demucs [12] is also based on a U-
Net architecture and operates on the time-domain signal,
with added features such as gated linear units and a recur-
rent layer between the encoder and the decoder.

2.1 Score-Informed Source Separation

The musical score, when available, is an invaluable source
of detailed information on the mixture, such as instrumen-
tation, pitch, and timing. Score-informed separation tech-
niques use this information to guide the separation process
[18]. One of the earliest techniques is synthesizing a sig-
nal from the target source’s score and then using this sig-
nal as a reference [19–21]. Another technique is creating
harmonicity-based masks or constraints driven by the note
pitches and timings specified in the score [22–24]. Scores
have also been used extensively as factorization constraints
in the framework of NMF and its extensions [25–30].

More recently, scores have also been integrated into
deep learning-based separation techniques. In [31], an
autoencoder network was trained while imposing score-
based constraints on the latent representation so that each
latent unit represents a single note. Separation was then
performed on a note-by-note basis. A technique for or-
chestral music separation [32] used a CNN that operates
on ‘score-filtered’ spectrograms.

3. SYNTHESIZED BACH CHORALES DATASET

For training source separation techniques based on super-
vised learning, a large dataset of multi-track recordings
is required. For example, the MUSDB18 dataset [9] for
vocals and accompaniment separation contains 150 songs
with a total duration of about 10 hours. Unfortunately, such
a dataset of choir recordings does not currently exist. The
Mixing Secrets dataset 1 contains some multi-microphone
choral recordings, but there is significant leakage between
the microphones. Choral Singing Dataset [33] is a good
multi-track dataset, but it consists of only three songs.

In the absence of a large choral music dataset, we opt
to use a synthesized dataset. Recently, a method for choir
synthesis was proposed based on voice cloning [34], but
unfortunately the implementation and the dataset are not
publicly available. Choir audio tracks are often produced
using commercial sample libraries 2 that contain thou-
sands of professionally recorded choir samples. Unfortu-
nately, these sample libraries are prohibitively expensive.

Previous work has shown that synthetic training data
does not have to sound realistic for a model to general-
ize well [35, 36]. In light of this, we choose a relatively
simple and cheap approach. We use the FluidSynth soft-
ware synthesizer [37], which converts MIDI messages to
audio by using audio samples and synthesis rules stored
in a SoundFont file. We use the ‘Choir Aahs’ preset from
the MuseScore_General SoundFont 3 . Each sample

1 http://www.cambridge-mt.com/ms/mtk/
2 e.g., http://soundsonline.com/hollywood-choirs
3 https://bit.ly/musescore-general

in this preset is a short recording of a single choir sec-
tion singing a sustained note on an ‘aah’ vowel with a
single pitch. To synthesize a pitch that does not have an
associated sample, FluidSynth pitch-shifts the sample that
has the closest pitch. To synthesize a note that is longer
than the corresponding sample, a predefined segment of
the sample is looped.

3.1 Bach Chorale Harmonizations

We construct our dataset from a well-known corpus of
chorale harmonizations by J. S. Bach. A chorale is a
Lutheran church hymn [38]. Bach harmonized around 400
chorales as part of large-scale vocal compositions as well
as shorter works [39]. Bach’s chorales are highly struc-
tured and this makes them good candidates to serve as a
coherent dataset for source separation. They are written
for four voices in homorhythmic texture [39]. The rhythm
consists mainly of quarter notes and eighth notes. Struc-
turally, the chorales are built as a sequence of short phrases,
each ending with a fermata (musical pause).

3.2 Data Augmentation

Real-world choir recordings possess many sources of vari-
ability that are absent from Bach chorales. In order to
make our dataset more closely resemble real-world record-
ings, we augment it with three added features: simulated
breaths, random omitted notes, and tempo variations.

To simulate breaths between phrases, we insert a one-
beat-long rest in all voices simultaneously every eight
beats. To simulate sections in which one or more voices
are silent while the other voices continue to sing, we ran-
domly choose 10% of the notes in each voice and change
them into rests. To add tempo variation, we synthesize
each chorale at a random tempo between 70 and 100 BPM.

3.3 Synthesis Procedure

To synthesize our dataset we read the corpus of Bach
chorales in MusicXML format using the music21 library
[40]. From the 371 chorales in the Riemenschneider edi-
tion we exclude 20 chorales that contain instrumental parts
or more than four vocal parts. The 351 remaining chorales
are split into three partitions: training (270 chorales), vali-
dation (50), and test (31). For each chorale we export four
MIDI files, one file per voice, and synthesize them using
FluidSynth. 4 The total duration of the dataset is 3h 48m.

4. BASELINE: SCORE-INFORMED NMF

We establish a baseline for separation performance on our
dataset using a classic separation technique: non-negative
matrix factorization (NMF) [5,41]. NMF factorizes a mix-
ture spectrogram into two matrices: basis signals and tem-
poral activations. To constrain the NMF separation process
we use a score-based initialization scheme for the basis

4 The code to generate the dataset is available at: https://
github.com/matangover/synthesize-chorales
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signals and activations matrices [25]. We dub this tech-
nique SI-NMF. Our implementation is available online. 5

We use the variant dubbed IWH in the original paper, which
imposes constraints on both basis signals and activations.
For the STFT we use a Hann window with a size of 2,048
samples (the dataset sampling rate is 22,050 Hz). The SI-
NMF score-based constraints allow some tolerance to ac-
count for slight pitch and timing variations in the mixture.
Since in our dataset the scores are perfectly aligned to the
mixture, we use onset tolerance of 0 and offset tolerance
of 0.2 seconds (to account for note decay). We use pitch
tolerance of 1 semitone. These parameters were found to
give the best results after comparing several alternatives.

5. WAVE-U-NET FOR CHORAL MUSIC

To improve on the SI-NMF baseline, we propose to ap-
ply Wave-U-Net (described in Section 2). Wave-U-Net
attained good results in the SiSEC 2018 evaluation cam-
paign [9] and its code is publicly available. Since Wave-
U-Net operates in the time domain, it may be well suited
for separating sources with overlapping partials, which are
ubiquitous in choral music and may pose a challenge for
methods that rely on spectrogram masking [12].

We follow the training procedure used in the original
Wave-U-Net paper. Every training batch consists of 16
short (6-second) segments extracted from the training set
at random positions. The Adam optimizer [42] is used with
the mean squared error loss and an initial learning rate of
0.0001. The validation set is used for early stopping.

In the original implementation of Wave-U-Net, a sin-
gle model is trained to extract all sources at the same time.
This is economical in terms of model weights and training
time, but it forces the latent representations to be generic
enough to fit all sources. Instead, we propose to train a sep-
arate model for each extracted source. This way the model
can be specifically geared to extract each of the sources.

6. SCORE-INFORMED WAVE-U-NET

We propose to condition Wave-U-Net on the musical score
of the separated sources to improve separation quality. 6

The pitch and timing information contained in the score
can help overcome the challenges of separating choral mu-
sic. Timbre is generally a useful differentiating factor for
separation, but the timbres of the women’s voices (soprano
and alto) are similar to each other, and so are the men’s
(tenor and bass). Relying on the pitch range of each choir
part is also not sufficient for separation because the ranges
have considerable overlap. For example, an F4 note (F
above middle C) could easily be sung by the soprano, alto,
or tenor, and in rare cases also by the bass [3, p. 234]. The
standard SATB (soprano-alto-tenor-bass) ordering of the
voices could sometimes be used for separation, but this or-
dering is not always kept, and in any case it could only
be used in sections where all voices sing at the same time.

5 https://git.io/si-nmf
6 https://git.io/si-Wave-U-Net

Hence, in many cases the musical score may be the only
way to associate notes to a specific voice in choral music.

6.1 Score Representations

Our dataset provides the score for each part as a mono-
phonic MIDI file indicating each note’s onset time, offset
time, and pitch. We transform the MIDI note sequence into
a representation that can be efficiently processed by Wave-
U-Net. In choral music, every part sings at most one note
at a time. (In the case of divisi, such as when soprano is
split into soprano 1 and soprano 2, we can treat every di-
visi section as a distinct source.) Therefore, we represent
a part’s score as a time series that indicates the active pitch
(if any) at every time point. To keep the score aligned with
the network’s audio input, we use the same sampling rate
for the audio and the score representation. We investigate
four different score representations [43].

normalized pitch. A part’s score is represented as a
vector in which every element indicates the active pitch at
the corresponding time instant. Since the range of MIDI
note numbers (0 to 127) is radically different from the
range of the audio input (-1 to 1), we normalize the note
number to the range [0, 1], and use the special value -1 to
indicate no note is active. Given a MIDI note number M ,
the normalized pitch Sn is computed as:

Sn(M) =
M −Mmin

Mmax −Mmin
, (1)

whereMmin andMmax are the minimum and maximum ex-
pected note pitches, respectively. We set Mmin = 36 and
Mmax = 84, based on the normal choral voice ranges: from
C2 (very low bass note) to C6 (very high soprano note).

pitch and amplitude. In order to better encode the dif-
ference between sung notes and silence, we introduce a
two-channel representation, in which one channel repre-
sents pitch and the other represents amplitude. The pitch
channel Sp is normalized to the range [−1, 1], as given by:
Sp(M) = 2Sn(M)−1. The amplitude channel is boolean:
its value is 1 when a note is active and 0 otherwise. When
no note is active the pitch channel is set to -1.

piano roll. The score is represented as a one-hot matrix
of size p × n where p is the number of available pitches
(p =Mmax−Mmin+1) and n is the length of the network’s
audio input. The matrix element at row pi and column
nj is set to 1 if a note with pitch pi is active at time nj .
Otherwise, the element is set to 0.

pure tone. Since the model inputs are audio, we pro-
pose to represent the score in a simplistic audio-like form.
We use a pure tone signal constructed as a piecewise sine
function where the frequency is controlled by the active
note’s pitch. For simplicity, we do not create smooth note
transitions, so any note onset will result in a discontinuity.
The pure tone frequency f is determined by the standard
MIDI note number to frequency mapping:

f(M) = 440 · 2
M−69

12 . (2)

When there is no active note, f is set to 0. The score vector
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Figure 1. Conditioning locations for Wave-U-Net (show-
ing a model that extracts a single source, see Section 5)

then receives the following value at each sample index i:

St(M, i) = sin

(
2πf(M) ∗ i

Fs

)
, (3)

where Fs is the sample rate of the model’s audio input.
All four score representations do not differentiate be-

tween a sustained note and a repeated note: consecutive
notes with the same pitch are represented the same as one
note with a longer duration. Devising a score representa-
tion that does encode this difference is left to future work.

6.2 Conditioning Method

Common methods for conditioning neural networks in-
clude concatenation, in which a conditioning tensor is con-
catenated to the input tensor; biasing, in which a condi-
tioning tensor is added to the input tensor; and scaling, in
which the input tensor is multiplied element-wise by a con-
ditioning tensor [44]. In this work we use concatenation,
which is equivalent to biasing with a linear transformation
applied to the conditioning [44].

We investigate three conditioning locations in the Wave-
U-Net architecture (see Figure 1): input conditioning
(score is concatenated to the input audio before the de-
coder), output conditioning (score is concatenated to the
decoder’s output before the output layer), and input-output
conditioning (a combination of both). Other conditioning
locations are also possible, but they would require a trans-
formed score representation. Conditioning at the bottle-
neck, for example, would necessitate resampling the score
information to the bottleneck’s much lower temporal reso-
lution, thus discarding important timing information con-
tained in the score. Conditioning at the bottleneck could
work well when the conditioning has no temporal dimen-
sion, such as instrument labels [45].

6.3 Multi-Source Training

In addition to the standard method of training the network
to extract specific voices, we propose a multi-source model
variant which can separate any one of the four voices given
only that voice’s score. To achieve this, we train a model

to extract a single voice from the mixture, where every
training example consists of a mixture segment (used as
input to the model), the score of one random voice out
of the four voices (used to condition the model), and the
corresponding audio for that voice as the target to extract
(used to compute the loss). Since training examples do
not explicitly specify which voice they correspond to, the
model learns to extract the desired voice based on its score
alone. Whereas a normal score-informed model could use
the score to improve separation results, the multi-source
model must make use of the score. In this sense, the sep-
aration is not only score-informed, it is score-guided. A
multi-source model also gives greater flexibility by allow-
ing users to choose individual notes to extract, possibly al-
ternating between voices. Furthermore, multi-source train-
ing can enable a model trained only on four-voice mixtures
to be used on recordings with any number of voices.

7. EXPERIMENTS AND RESULTS

To evaluate model performance, we use the SDR met-
ric [46] provided by the BSS Eval library (version 4) [9]
with its default settings 7 . Like SiSEC 2018 and subse-
quent works, we report median SDR rather than mean in
order to reduce the effect of outliers. We compare all pro-
posed model variants in 6 experiments, listed in Table 1.
Audio examples are available online. 8 We assess whether
certain methods perform better than others by reporting p-
values from pairwise Conover–Iman tests [47] (also used
by [9]; we adjust for multiple comparisons using the Bon-
ferroni method [48]), always after rejecting the Kruskal–
Wallis [49] null hypothesis with P < 0.001.

Experiment Method Score-Informed Model Type

1 SI-NMF yes -
2 Wave-U-Net no one model for all voices
3 Wave-U-Net no one model per voice
4 Wave-U-Net yes one model for all voices
5 Wave-U-Net yes one model per voice
6 Wave-U-Net yes one model: multi-source

Table 1. List of experiments

7.1 Experiments 1–3: SI-NMF and Wave-U-Net

A comparison of separation performance of SI-NMF and
Wave-U-Net on the test set is shown in Figure 2. While
SI-NMF achieves decent results, Wave-U-Net consistently
outperforms it in all voices by a large margin (P < 0.001).

In SI-NMF, interferences between estimated sources are
very low due to the hard constraints imposed using the
score. However, estimated sources contain noticeable am-
plitude modulation artifacts. These are likely caused by
the use of static spectral templates, which cannot effec-
tively model the continuous evolution of spectral param-
eters in choral music. Source-filter signal models can be
integrated into NMF to improve its performance in such
cases [50–52]. The effectiveness of such models for choral

7 We also provide supplementary SIR, SAR, and ISR evaluations. 8

8 https://www.matangover.com/choirsep-ismir
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Figure 3. Results from Experiment 4 (with score; score
type: normalized pitch, conditioning location: input) com-
pared to Experiment 2 (without score)

music may be limited, however, as a choir section is ac-
tually composed of multiple sound sources (singers). Fig-
ure 2 further shows that single-voice Wave-U-Net (Exper-
iment 3) is superior to all-voice Wave-U-Net (Experiment
2) (P < 0.001).

Examination of segments in which the model achieved a
particularly low SDR reveals that the most common source
of errors is misclassified notes (that is, when the model
assigns notes to the wrong voice) [43]. One cause for
misclassified notes is voice crossings, which occur when
the normal voice ordering is violated. The fact that voice
crossings cause misclassification shows that the model has
learned to rely on the standard ordering of the voices. Mis-
classified notes also occur in segments in which one voice
is silent while the other voices continue to sing. In such
segments the model cannot always infer which voice is
silent due to the overlap between voice ranges.

7.2 Experiment 4: Score-Informed, Extract All Voices

In Experiment 4 we examine the effect of adding score
conditioning to the model from Experiment 2. We train
12 score-informed model variants: all combinations of 4
score representations and 3 conditioning locations. Fig-
ure 3 shows that adding the score improves median SDR
in all voices (P < 0.001) except for soprano (P > 0.05).

Figure 4 compares all score conditioning methods.
Conditioning location has no consistent effect on soprano

Figure 4. Results from Experiment 4 by voice, score type,
and conditioning location

and bass separation. For alto and tenor, however, output
conditioning is overall worse than both input and input-
output conditioning (P < 0.001). We suspect that out-
put conditioning performs poorly because the Wave-U-Net
output layer is a simple sample by sample dot-product
(convolutional layer with kernel of size 1).

7.3 Experiment 5: Score-Informed, Extract Single

Figure 5 compares the performance of score conditioning
methods for tenor extraction in Experiment 5. We compare
results for tenor specifically because it is the most chal-
lenging to separate (it achieved the lowest median SDR in
most experiments). Output conditioning gives the worst
performance and has no significant effect compared to no
score at all (P > 0.05). It appears the models conditioned
at the output have learned to simply ignore the score. For
input and input-output conditioning, the choice of score
type has no effect, and all score types perform consider-
ably better than no score at all (P < 0.001), with an im-
provement of up to 2.7 dB in median SDR.

7.4 Experiment 6: Score-Informed, Multi-Source

This experiment tested the effect of score conditioning
method on multi-source training (described in Section 6.3).
We do not include a figure due to limited space, see
website 8 for results. Models using output conditioning
perform very poorly, confirming the results of Experiments
4 and 5. Other than that, conditioning method does not
have an effect in this experiment. The difference in me-
dian SDR between the best method (pitch and amplitude,
input) and the worst method (piano roll, input-output) is
only 0.4 dB.
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Figure 5. Comparison of score conditioning methods in
Experiment 5 (on tenor only), with the non-score-informed
counterpart (Experiment 3) shown for reference

7.5 Overall Comparison

In Figure 6 we compare results from all experiments. For
the score-informed models we use the conditioning method
that performed best, taking into account all experiments
and all voices (score type: pitch and amplitude, condition-
ing location: input). As expected, using the score improves
performance mainly for the inner voices (alto and tenor),
as they are more prone to induce misclassified notes due to
voice crossings and vocal range overlap (see Section 7.1).
Examination of frames with misclassified notes confirms
that using the score eliminates this problem [43, p. 95].

The score-informed single-source model has the best
performance overall. For alto and tenor, this model
achieves a 2.7 dB improvement in median SDR compared
to the best non-score-informed model (P < 0.001). For
soprano, the improvement is only 0.5 dB (P < 0.001) and
for bass performance is degraded by 0.06 SDR (P < 0.01).
Compared to the NMF baseline, score-informed Wave-U-
Net improves median SDR by 6.2 to 8.1 dB (P < 0.001).

Interestingly, for tenor and alto, the multi-source model
outperforms the non-score-informed single-source model
(P < 0.001), even though the multi-source model uses
only a quarter of the parameters (because it uses a single
model for all four voices).

Listening to audio results of score-informed models, 8

we notice that most score conditioning methods result in
audible clicks at note boundaries. This is likely caused by
the discontinuity of the score representations at these loca-
tions. These clicks hardly affect the SDR evaluations be-
cause they are highly localized. Using the pure tone score
representation eliminates these clicks almost completely.

7.6 Evaluation on Real-World Recordings

Although our models have only been trained on synthe-
sized data, we also evaluate using real choir recordings
from the Choral Singing Dataset [33]. In this evaluation,
non-score-informed Wave-U-Net (Experiment 3 model)
performs poorly with a median SDR of 0 dB (for all voices

Figure 6. Comparison of results from all experiments

combined). Score-informed Wave-U-Net performs better
with SDR of 1.4 and 1.5 dB (models from Experiments 5
and 6, respectively). SI-NMF outperforms Wave-U-Net by
a large margin with SDR of 5.6 dB (P < 0.001).

Listening to estimated sources we notice that score-
informed Wave-U-Net predicts all the right notes, but can-
not faithfully generate the lyrics and unique timbre of the
specific choir, likely due to it being trained on a dataset
containing only a single choir without any lyrics. SI-NMF
predictions also omit many of the lyrics and timbre varia-
tions, but are nonetheless better than Wave-U-Net in this
case. This shows that to be effective on real-world record-
ings, Wave-U-Net needs to be trained on a more represen-
tative dataset. We postulate that if score-informed Wave-
U-Net (or similar methods) could be trained on a diverse
dataset of choral recordings, it would achieve an improve-
ment over SI-NMF that is comparable to the improvement
that it has achieved on the synthesized dataset.

8. CONCLUSIONS

In this paper we investigated source separation of choral
music. Due to the lack of publicly available datasets, we
developed a dataset of synthesized Bach chorales. We es-
tablished baseline separation performance using a score-
informed NMF method. We then showed that NMF is
outperformed by Wave-U-Net, a deep learning separation
technique. We further proposed to condition Wave-U-Net
on musical scores. Our experiments with several condi-
tioning methods showed that using the score improves sep-
aration quality. We introduced multi-source training, in
which a single model separates any of the four choir voices
using only the score as a guide. We found that multi-source
training performs comparably to single-source training,
even though it requires much less resources.

When evaluated on real choir recordings, SI-NMF still
outperforms Wave-U-Net. Hence, a major challenge that
remains is compiling a multi-track choir recording dataset
to be used for training. Until such a dataset is available,
better choir synthesis methods could be used. Another av-
enue for improvement would be to consider more versatile
conditioning methods, such as FiLM layers [53, 54].
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