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ABSTRACT

A major bottleneck in the evaluation of music generation
is that music appreciation is a highly subjective matter.
When considering an average appreciation as an evalua-
tion metric, user studies can be helpful. The challenge
of generating personalized content, however, has been ex-
amined only rarely in the literature. In this paper, we
address generation of personalized music and propose a
novel pipeline for music generation that learns and opti-
mizes user-specific musical taste. We focus on the task
of symbol-based, monophonic, harmony-constrained jazz
improvisations. Our personalization pipeline begins with
BebopNet, a music language model trained on a corpus of
jazz improvisations by Bebop giants. BebopNet is able to
generate improvisations based on any given chord progres-
sion 1 . We then assemble a personalized dataset, labeled
by a specific user, and train a user-specific metric that re-
flects this user’s unique musical taste. Finally, we employ
a personalized variant of beam-search with BebopNet to
optimize the generated jazz improvisations for that user.
We present an extensive empirical study in which we ap-
ply this pipeline to extract individual models as implicitly
defined by several human listeners. Our approach enables
an objective examination of subjective personalized mod-
els whose performance is quantifiable. The results indi-
cate that it is possible to model and optimize personal jazz
preferences and offer a foundation for future research in
personalized generation of art. We also briefly discuss op-
portunities, challenges, and questions that arise from our
work, including issues related to creativity.

1. INTRODUCTION

Since the dawn of computers, researchers and artists have
been interested in utilizing them for producing different

1 Supplementary material and numerous MP3 demonstrations of jazz
improvisations of jazz standards and pop songs generated by BebopNet
are provided in https://shunithaviv.github.io/bebopnet.

c© Shunit Haviv Hakimi, Nadav Bhonker, and Ran El-
Yaniv. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Shunit Haviv Hakimi, Na-
dav Bhonker, and Ran El-Yaniv, “BebopNet: Deep Neural Models for
Personalized Jazz Improvisations”, in Proc. of the 21st Int. Society for
Music Information Retrieval Conf., Montréal, Canada, 2020.

forms of art, and notably for composing music [1]. The ex-
plosive growth of deep learning models over the past sev-
eral years has expanded the possibilities for musical gen-
eration, leading to a line of work that pushed forward the
state-of-the-art [2–6]. Another recent trend is the devel-
opment and offerings of consumer services such as Spo-
tify, Deezer and Pandora, aiming to provide personalized
streams of existing music content. Perhaps the crowning
achievement of such personalized services would be for
the content itself to be generated explicitly to match each
individual user’s taste. In this work we focus on the task of
generating user personalized, monophonic, symbolic jazz
improvisations. To the best of our knowledge, this is the
first work that aims at generating personalized jazz solos
using deep learning techniques.

The common approach for generating music with neu-
ral networks is generally the same as for language mod-
eling. Given a context of existing symbols (e.g., charac-
ters, words, music notes), the network is trained to predict
the next symbol. Thus, once the network learns the dis-
tribution of sequences from the training set, it can gener-
ate novel sequences by sampling from the network output
and feeding the result back into itself. The products of
such models are sometimes evaluated through user studies
(crowd-sourcing). Such studies assess the quality of gen-
erated music by asking users their opinion, and computing
the mean opinion score (MOS). While these methods may
measure the overall quality of the generated music, they
tend to average-out evaluators’ personal preferences. An-
other, more quantitative but rigid approach for evaluation
of generated music is to compute a metric based on musical
theory principles. While such metrics can, in principle, be
defined for classical music, they are less suitable for jazz
improvisation, which does not adhere to such strict rules.

To generate personalized jazz improvisations, we pro-
pose a framework consisting of the following elements: (a)
BebopNet: jazz model learning; (b) user preference elicita-
tion; (c) user preference metric learning; and (d) optimized
music generation via planning.

As many jazz teachers would recommend, the key to at-
taining great improvisation skills is by studying and emu-
lating great musicians. Following this advice, we train Be-
bopNet, a harmony-conditioned jazz model that composes
entire solos. We use a training dataset of hundreds of pro-
fessionally transcribed jazz improvisations performed by
saxophone giants such as Charlie Parker, Phil Woods and
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Figure 1. A short excerpt generated by BebopNet.

Cannonball Adderley (see details in Section 4.1.1). In this
dataset, each solo is a monophonic note sequence given
in symbolic form (MusicXML) accompanied by a syn-
chronized harmony sequence. After training, BebopNet is
capable of generating high fidelity improvisation phrases
(this is a subjective impression of the authors). Figure 1
presents a short excerpt generated by BebopNet.

Considering that different people have different musi-
cal tastes, our goal in this paper is to go beyond straight-
forward generation by this model and optimize the gener-
ation toward personalized preferences. For this purpose,
we determine a user’s preference by measuring the level of
their satisfaction throughout the solos using a digital vari-
ant of continuous response interface (CRDI) [7]. This is
accomplished by playing, for the user, computer-generated
solos (from the jazz model) and recording their good/bad
feedback in real time throughout each solo. Once we have
gathered sufficient data about the user’s preferences, con-
sisting of two aligned sequences (for the solos and feed-
back), we train a user preference metric in the form of
a recurrent regression model to predict this user’s prefer-
ences. A key feature of our technique is that the result-
ing model can be evaluated objectively using hold-out user
preference sequences (along with their corresponding so-
los). A big hurdle in accomplishing this step is that the
signal elicited from the user is inevitably extremely noisy.
To reduce this noise, we apply selective prediction tech-
niques [8, 9] to distill cleaner predictions from the user’s
preference model. Thus, we allow this model to abstain
whenever it is not sufficiently confident. The fact that it
is possible to extract a human continuous response prefer-
ence signal on musical phrases and use it to train (and test)
a model with non-trivial predictive capabilities is interest-
ing in itself (and new, to the best of our knowledge).

Equipped with a personalized user preference metric
(via the trained model), in the last stage we employ a vari-
ant of beam-search [10], to generate optimized jazz solos
from BebopNet. For each user, we apply the last three
stages of this process where the preference elicitation stage
takes several hours of tagging per user. We applied the pro-
posed pipeline on four users, all of whom are amateur jazz
musicians. We present numerical analysis of the results
showing that a personalized metric can be trained and then
used to optimize solo generation.

To summarize, our contributions include: (1) a use-
ful monophonic neural model for general jazz improvi-
sation within any desired harmonic context; (2) a viable
methodology for eliciting and learning high resolution hu-
man preferences for music; (3) a personalized optimization
process of jazz solo generation; and (4) an objective eval-
uation method for subjective content and plagiarism anal-
ysis for the generated improvisations.

2. RELATED WORK

Many different techniques for algorithmic musical compo-
sition have been used over the years. For example, some
are grammar-based [11], rule-based [1, 12], use Markov
chains [13–15], evolutionary methods [16, 17] or neural
networks [18–20]. For a comprehensive summary of this
broad area, we refer the reader to [21]. Here we con-
fine the discussion to closely related works that mainly
concern jazz improvisation using deep learning techniques
over symbolic data. In this narrower context, most works
follow a generation by prediction paradigm, whereby a
model trained to predict the next symbol is used to greed-
ily generate sequences. The first work on blues improvisa-
tion [22] straightforwardly applied long short-term mem-
ory (LSTM) networks on a small training set. While
their results may seem limited at a distance of nearly two
decades 2 , they were the first to demonstrate long-term
structure captured by neural networks.

One approach to improving a naïve greedy genera-
tion from a jazz model is by using a mixture of experts.
For example, Franklin et al. [23] trained an ensemble of
neural networks were trained, one specialized for each
melody, and then selected from among them at genera-
tion time using reinforcement learning (RL) utilizing a
handcrafted reward function. Johnson et al. [24] gener-
ated improvisations by training a network consisting of
two experts, each focusing on a different note represen-
tation. The experts were combined using the technique
of product of experts [25] 3 . Other remotely related non-
jazz works have attempted to produce context-dependent
melodies [2, 3, 5, 26–30].

A common method for collecting continuous measure-
ments from human subjects listening to music is the con-
tinuous response digital interface (CRDI), first reported
by [7]. CRDI has been successful in measuring a variety
of signals from humans such as emotional response [31],
tone quality and intonation [32], beauty in a vocal perfor-
mance [33], preference for music of other cultures [34] and
appreciation of the aesthetics of jazz music [35]. Using
CRDI, listeners are required to rate different elements of
the music by adjusting a dial (which looks similar to a vol-
ume control dial present on amplifiers).

3. PROBLEM STATEMENT

We now state the problem in mathematical terms. We de-
note an input xt = (st, ct) consisting of a note st and its
context ct. Each note st ∈ S , in turn, consists of a pitch
and a duration at index t and S represents a predefined
set of pitch-duration combinations (i.e., notes). The con-
text ct ∈ C represents the chord that is played with note
st, where C is the set of all possible chords. The context
may contain additional information such as the offset of
the note within a measure (see details in Section 4). Let
D denote a training dataset consisting of M solos. Each

2 Listen to their generated pieces at www.iro.umontreal.ca/
~eckdoug/blues/index.html.

3 Listen to the generated solos at www.cs.hmc.edu/~keller/
jazz/improvisor/iccc2017/
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solo is a sequence Xτ = x1· · ·xτ ∈ (S × C)τ of arbitrary
length τ . In our work, these are the aforementioned jazz
improvisations.

We define a context-dependent jazz model fθ (Eq. 1),
as the estimator of the probability of a note st given the
sequence of previous inputs Xt−1 and the current context
ct, where θ are the parameters of the model. This is similar
to a human jazz improviser who is informed of the chord
over which his next note will be played.

fθ(Xt−1, ct) = Pr(st|Xt−1, ct) (1)

For any solo Xτ , we also consider an associated se-
quence of annotation Yτ = y1· · · yτ ∈ Yτ . An annotation
yt ∈ Y represents the quality of the solo up to point t by
some metric. In our case, yt may be a measure of prefer-
ence as indicated by a user or a score measuring harmonic
compliance. Let D̃ denote a training dataset consisting of
N solos. Each solo Xτ of arbitrary length τ is labeled
with a sequence Yτ . Given D̃, we define a metric gφ (Eq.
2) to predict yτ given a sequence of inputs Xτ . gφ is the
user-preference model and φ are the learned parameters.

ŷτ = gφ(Xτ ) (2)

We denote by ψ a function that is used to sample notes
from fθ to generate solos. In our case, this will be our
beam-search variant. The objective here is to train viable
models, fθ and gφ, and then to use ψ to sample solos from
fθ while maximizing gφ.

4. METHODS

In this section we describe the methods used and imple-
mentation details of our personalized generation pipeline.

4.1 BebopNet: Jazz Model Learning

In the first step of our pipeline, we use supervised learning
to train BebopNet, a context-dependent jazz model fθ from
a given corpus of transcribed jazz solos.

4.1.1 Dataset and music representation

Our corpus D consists of 284 professionally transcribed
solos of (mostly) Bebop saxophone players of the early
20th century. These are Charlie Parker, Sonny Stitt, Can-
nonball Adderley, Dexter Gordon, Sonny Rollins, Stan
Getz, Phil Woods and Gene Ammons. We consider only
solos that are in 4/4 metre and include chords in their tran-
scription. The solos are provided in musicXML format.
As opposed to MIDI, this format allows the inclusion of
chord symbols 4 . We represent notes using a representa-
tion method inspired by sheet music (see Figure 2).
Pitch The pitch is encoded as a one-hot vector of size 129.
Indices 0—127 match the pitch range of the MIDI stan-
dard. 5 Index 128 corresponds to the rest symbol.

4 The solos were purchased from SaxSolos.com [36]; we are thus un-
able to publish them. Nevertheless, in the supplementary material we
provide a complete list of solos used for training, which are available
from the above vendor.

5 The notes appearing in the corpus all belong to a much smaller range;
however, the MIDI range standard was maintained for simplicity.
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Figure 2. An example of a measure in music notation and
its vector representation. Integers are converted to one-hot
representations.

Duration The duration of each note is encoded using a
one-hot vector consisting of all the existing durations in
the dataset. Durations smaller than 1/24 are removed.
Offset The offset of the note lies within the measure and is
quantized to 48 “ticks” per (four-beat) measure. This cor-
responds to a duration of 1/12 of a beat. This is similar to
the learned positional-encoding used in translation [37].
Chord The chord is represented by a four-hot vector of
size 12, representing the 12 possible pitch classes to appear
in a chord. As common in jazz music, unless otherwise
noted, we assume that chords are played using their 7th

form. Thus, the chord pitches are usually the 1st, 3rd, 5th,
and 7th degrees of the root of the chord. This chord repre-
sentation allows the flexibility of representing rare chords
such as sixth, diminished and augmented chords.

4.1.2 Network Architecture

BebopNet, as many language models, can be implemented
using different architectures such as recurrent neural net-
works (RNNs), convolutional networks (CNNs) [5, 26, 38]
or attention-based models [39]. BebopNet contains a
three-layer LSTM network [40]. Recent promising results
with attention based models enabled us to improve Bebop-
Net by replacing the LSTM with Transformer-XL [41].
The architecture of the network used to estimate fθ is il-
lustrated in Figure 3. The network’s input xt includes
the note st (pitch and duration) and context ct (offset and
chord). The pitch, duration and offset are each represented
by learned embedding layers. The chord is encoded by
using the embedding of the pitches comprising it. While
notes at different octaves have different embeddings, the
chord pitch embeddings are always taken from the octave
in which most notes in the dataset reside. This embed-
ded vector is passed to the LSTM network. The LSTM
output is then passed to two heads. Each head consists
of two fully-connected layers with a sigmoid activation in-
between. The output of the first layer is the same size as the
embedding of the pitch (or duration), and the second out-
put size is the number of possible pitches (or durations).
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Figure 3. The BebopNet architecture for the next note prediction. Each note is represented by concatenating the embed-
dings of the pitch (red bar), the duration (purple bar) and the four pitches comprising the current chord (green bars). The
output of the LSTM is passed to two heads (orange bars), one the size of the pitch embedding (top) and the other the size
of the duration embedding (bottom).

Following [42, 43], we tie the weights of the final fully-
connected layers to those of the embedding. Finally, the
outputs of the two heads pass through a softmax layer and
are trained to minimize the negative log-likelihood of the
corpus. To enrich our dataset while encouraging harmonic
context dependence, we augment our dataset by transpos-
ing to all 12 keys.

4.2 User Preference Elicitation

Using BebopNet, we created a dataset to be labeled by
users, consisting of 124 improvisations. These solos were
divided into three groups of roughly the same size: so-
los from the original corpus, solos generated by BebopNet
over jazz standards present in the training set, and gener-
ated solos over jazz standards not present in the training
set. The length of each solo is two choruses, or twice the
length of the melody. For each standard, we generated a
backing track in MP3 format that includes a rhythm sec-
tion and a harmonic instrument to play along the improvi-
sation using Band-in-a-Box [44]. This dataset amounts to
approximately five hours of played music.

We created a system inspired by CRDI that is entirely
digital, replacing the analog dial with strokes of a keyboard
moving a digital dial. A figure of our dial is presented in
the supplementary material. While the original CRDI had
a range of 255 values, our initial experiments found that
quantizing the values to five levels was easier for users.
We recorded the location of the dial at every time step and
aligned it to the note being played at the same moment.

4.3 User Preference Metric Learning

In the user preference metric learning stage we again use
supervised learning to train a metric function gφ. This
function should predict user preference scores for any solo,
given its harmonic context. During training, for each se-
quence Xτ we estimate yτ , corresponding to the label the
user provided for the last note in the sequence. We choose
the last label of the sequence, rather than the mode or
mean, because of delayed feedback. During the user elici-
tation step, we noticed that when a user decides to change
the position of the dial, it is because he has just heard a
sequence of notes that he considers to be more (or less)

pleasing than those he heard previously. Thus, the label in-
dicates the preference of the past sequence. The labels are
linearly scaled down to the range [−1, 1]. Since the data in
D̃ is small and unbalanced, we use stratified sampling over
solos to divide the dataset into training and validation sets.
We then use bagging to create an ensemble of five models
for the final estimate.

4.3.1 Network Architecture

We estimate the function gφ using transfer learning from
BebopNet. The user preference model consists of the same
layers as BebopNet without the final fully-connected lay-
ers. Next, we apply scaled dot-product attention [45] over
τ time steps followed by fully-connected and tanh layers.
The transferred layers are initialized using the weights θ
of BebopNet. Furthermore, the weights of the embedding
layers are frozen during training.

4.3.2 Selective Prediction

To elevate the accuracy of gφ, we utilize selective pre-
diction whereby we ignore predictions whose confidence
is too low. We use the prediction magnitude as a proxy
for confidence. Given confidence threshold parameters,
β1 < 0, β2 > 0, we define g′φ,β1,β2

(Xi
t) in Eq. 3.

g′φ,β1,β2
(Xi

t) =

{
0 if β1 < gφ(X

i
t) < β2

gφ(X
i
t) else

(3)

The parameters β1 and β2 change our coverage rate
and are determined by minimizing error (risk) on the risk-
coverage plot along a predefined coverage contour. More
details are given in Section 5.2.

4.4 Optimized Music Generation

To optimize generations from fθ, we apply a variant of
beam-search, ψ, whose objective scores are obtained from
non-rejected predictions of gφ. Pseudocode of the ψ proce-
dure is presented in the supplementary material. We denote
by Vb = [X1

t , X
2
t , ..., X

b
t ] a running batch (beam) of size

(beam-width) b containing the most promising candidate
sequences found so far by the algorithm. The sequences
are all initialized with the starting input sequence. In our
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Name Adderley Gordon Getz Parker Rollins Stitt Woods Ammons BebopNet (Heard) BebopNet (Unheard)

Chord 0.50 0.54 0.53 0.52 0.52 0.53 0.50 0.54 0.53 0.52
Scale 0.78 0.83 0.81 0.80 0.81 0.83 0.78 0.83 0.82 0.81

Table 1. Harmonic coherence: The average chord and scale matches computed for artists in the dataset and for BebopNet.
A higher number indicates a high coherency level. BebopNet is measured separately for harmonic progressions heard and
not heard in the training dataset.

case, this is the melody of the jazz standard. At every time
step t, we produce a probability distribution of the next
note of every sequence in Vb by passing the b sequences
through the network fθ(Xi

t , c
i
t+1). As opposed to typical

applications of beam-search, rather than choosing the most
probable notes from Pr(st+1|Xi

t , c
i
t+1), we independently

and randomly sample them. We then calculate the score of
the extended candidates using the preference metric, gφ.

Every δ steps, we perform a beam update process. We
choose the highest scoring k sequences calculated by gφ.
Then we duplicate these sequences b/k times to maintain
a full beam of b sequences. Choosing different values of
δ allows us to control a horizon parameter, which facili-
tates longer term predictions when extending candidate se-
quences in the beam. The use of larger horizons may lead
to sub-optimal optimization but increases variability.

5. EXPERIMENTS

We start the experimental process by training BebopNet as
described in Section 4. After training, we use BebopNet to
generate multiple solos over different jazz standards 6 . To
verify that BebopNet can generalize to harmonic progres-
sions of different musical genres, we also generate impro-
visations over pop songs (see supplementary material).

This section has two sub-sections. First, we evaluate
BebopNet in terms of harmonic coherence (5.1). Next, we
present an analysis of our personalization process (5.2).
All experiments were performed on desktop computers
with a single Titan X GPU. Hyperparameters are provided
in the supplementary material.

5.1 Harmonic Coherence

We begin by evaluating the extent to which BebopNet was
able to capture the context of chords, which we term har-
monic coherence. We define two harmonic coherence met-
rics using either scale match or chord match. These metrics
are defined as the percent of time within a measure where
notes match pitches of the scale or the chord being played,
respectively. We rely on a standard definition of match-
ing scales to chords using the chord-scale system [46].
While most notes in a solo should be harmonically coher-
ent, some non-coherent notes are often incorporated. Com-
mon examples of their uses are chromatic lines, approach
notes and enclosures [47]. Therefore, as we do not expect a
perfect harmonic match according to pure music rules, we

6 To appreciate the diversity of BebopNet, listen to seven solos gener-
ated for user-4 for the tune Recorda-Me in the supplementary material.

take as a baseline the average matching statistics of these
quantities for each jazz artist in our dataset. The harmonic
coherence statistics of BebopNet are computed over the
dataset used for the preference metric learning (generated
by BebopNet), which also includes chord progressions not
heard during the jazz modeling stage. The baselines and
results are reported in Table 1. It is evident that our model
exhibits harmonic coherence in the ‘ballpark’ of the jazz
artists even on chord progressions not previously heard.
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Figure 4. 4i Predictions of the preference model on se-
quences from a validation set. Green: sequences labeled
with a positive score (yτ > 0); yellow: neutral (yτ = 0);
red: negative (yτ < 0). The blue vertical lines indicate
thresholds β1, β2 used for selective prediction. 4ii Risk-
coverage plot for the predictions of the preference model.
β1, β2 (green lines) are defined to be the thresholds that
yield a minimum error on the contour of 25% coverage.
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5.2 Analyzing Personalized Models

We applied the proposed pipeline to generate personalized
models for each of the four users, all amateur jazz musi-
cians. All users listened to the same training dataset of
solos to create their personal metric (see Section 4). Each
user provided continuous feedback for each solo using our
CRDI variant. In this section, we describe our evaluation
process for user-1. The evaluation results for the rest of the
users are presented in the supplementary material.

We analyze the quality of our preference metric func-
tion gφ by plotting a histogram of the network’s predic-
tions applied on a validation set. Consider Figure 4i. We
can crudely divide the histogram into three areas: the
right-hand side region corresponds to mostly positive se-
quences predicted with high accuracy; the center region
corresponds to high confusion between positive and neg-
ative; and the left one, to mostly negative sequences pre-
dicted with some confusion. While the overall error of the
preference model is high (0.4 MSE where the regression
domain is [-1,1]), it is still useful since we are interested
in its predictions in the positive (green) spectrum for the
forthcoming optimization stage. While trading-off cover-
age, we increase prediction accuracy using selective pre-
diction by allowing our classifier to abstain when it is not
sufficiently confident. To this end, we ignore predictions
whose magnitude is between two rejection thresholds (see
Section 4.3.2). Based on preliminary observations, we fix
the rejection thresholds to maintain 25% coverage over the
validation set. In Figure 4ii we present a risk-coverage plot
for user-1 (see definition in [8]). The risk surface is com-
puted by moving two thresholds β1 and β2 across the his-
togram in Figure 4i, and at each point, for data not between
the thresholds, we calculate the risk (error of classification
to three categories: positive, neutral and negative) and the
coverage (percent of data maintained).

We increase the diversity of generated samples by tak-
ing the score’s sign rather than the exact score predicted
by the preference model gφ. Therefore, different posi-
tive samples are given equal score. For user-1, the aver-
age score predicted by gφ for generated solos of Bebop-
Net is 0.07. As we introduce beam-search and increase the
beam width, the performance increases up to an optimal
point from which it decreases (see supplementary mate-
rial). User-1’s scores peaked at 0.8 with b = 32, k = 8.
Anecdotally, there was one solo that user-1 felt was excep-
tionally good. For that solo, the model predicted the per-
fect score of 1. This indicates that the use of beam-search
is indeed beneficial for optimizing the preference metric.

6. PLAGIARISM ANALYSIS

One major concern is the extent to which BebopNet plagia-
rizes. In our calculations, two sequences that are identical
up to transposition are considered the same. To quantify
plagiarism in a solo with respect to a set of source solos,
we measure the percentage of n-grams in that solo that also
appear in any other solo in the source. These statistics are
also applied to any artist in our dataset to form a baseline

for the typical amount of copying exhibited by humans.
Another plagiarism measurement we define is the

largest common sub-sequence. For each solo, we consider
the solos of other artists as the source set. Then, we aver-
age the results per artist. Also, for every artist, we com-
pare every solo against the rest of his solos to measure
self-plagiarism. For BebopNet, we quantify the plagiarism
level with respect to the entire corpus. The average plagia-
rism level of BebopNet is 3.8. Interestingly, this value lies
within the human plagiarism range found in the dataset.
This indicates that BebopNet can be accused of plagiarism
as much as some of the famous jazz giants. We present the
extended results in the supplementary material.

7. CONCLUDING REMARKS

We presented a novel pipeline for generating personalized
harmony-constrained jazz improvisations by learning and
optimizing a user-specific musical preference model. To
distill the noisy human preference models, we used a se-
lective prediction approach. We introduced an objective
evaluation method for subjective content and numerically
analysed our proposed pipeline on four users.

Our work raises many questions and directions for fu-
ture research. While our generated solos are locally coher-
ent and often interesting/pleasing, they lack the qualities of
professional jazz related to general structure such as motif
development and variations. Preliminary models we have
trained on smaller datasets were substantially weak. Can a
much larger dataset generate a significantly better model?
To acquire such a large corpus it might be necessary to
abandon the symbolic approach and rely on raw audio.

Our work emphasizes the need to develop effective
methodologies and techniques to extract and distill noisy
human feedback that will be required for developing many
personalized applications. Our proposed method raises
many questions. To what extent does our metric express
the specifics of one’s musical taste? Can we extract precise
properties from this metric? Additionally, our technique
relies on a sufficiently large labeled sample to be provided
by each user, a substantial effort on the user’s part. We
anticipate that the problem of eliciting user feedback will
be solved in a completely different manner, for example,
by monitoring user satisfaction unobtrusively, e.g., using a
camera, EEG, or even direct brain-computer connections.

The challenge of evaluating neural networks that gen-
erate art remains a central issue in this research field. An
ideal jazz solo should be creative, interesting and mean-
ingful. Nevertheless, when evaluating jazz solos, there are
no mathematical definitions for these properties—as yet.
Previous works attempted to define and optimize creativ-
ity [48], but no one has yet delineated an explicit objective
definition. Some of the main properties of creative per-
formance are innovation and the generations of patterns
that reside out-of-the-box— namely, the extrapolation of
outlier patterns beyond the observed distribution. Present
machine learning regimes, however, are mainly capable of
handling interpolation tasks and not extrapolation. Is it at
all possible to learn the patterns of outliers?

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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